
CHAPTER 1 Introduction
d to

t is

e
er
ling,

a is

hin
ny
This chapter provides an introduction to Mica, a graphics library that can be use
manage all aspects of 2D graphics applications, including user-interfaces, dia-
grams, graphs and animations.

Mica is named after the finely-layered, flexible, partially transparent mineral tha
found in nature.

This white paper refers to Mica Version 0.90 (Alpha)

About Mica

Mica is an object-oriented graphics framework specifically crafted to support th
implementation and inter-mingling of graphing editors, drawing editors, and us
interfaces. To this end Mica has extensive support for display lists, event hand
action dispatching, coordinate transforms, and connectivity.

Mica is not a desktop, though desktops can be implemented on top of Mica. Mic
not a user interface toolkit, though one is included with Mica. Mica is not just a
object-oriented graphics toolkit, though there are primitive graphics objects wit
Mica: these graphics primitives have a wealth of functionality and there are ma
layers of functionality on top of them. Mica is not drawing editor, though one is
The Mica Graphics Framework (4/19/98) 1

Chapter 1 Introduction

n be
per).

, etc.,
All
more

 by
st or a
n

ding

urce
; those
 pro-
mploy-
included with it as a sample application. Mica is not an application framework, though Mica ca
the graphics component of an application framework (see the forthcoming Cadabra white pa

Mica is designed and written by programmers to support programmers. Whenever a part is moved
or added or removed, an attribute is changed, the viewport modified, a button label changed
Mica automatically updates any internal data, any layout, and the current view, if necessary.
parts derive from a richly featured base class in order that the programmer can easily add a bit
functionality to what may be historically considered a ‘simple’ part. Any part can be replaced
any other part (for example a labeled icon in a node-arc graph can be replaced by a scrolled li
plot or an embedded internal window). Similarly, a part can be assigned to another part as a
attachment without having to alter the container-part hierarchy.

Acknowledgements

We want to thank Sun Microsystems for making such a fun programming language and for lea
the battle for the rest of us in the portability wars.

We would also like to acknowledge those who have written and distributed graphics toolkit so
code before us: we hope you enjoy cruising this code as much as we enjoyed cruising yours
who have published papers, manuals and books about graphics toolkits: we all rely on you to
pogate the art to the rest of us; and to those whose work and ideas are held hostage by their e
ers: we cast Mica into the winds as yet another blow against the empire.

Naming Methodology

Every class name starts with ‘Mi’.

Every identifier name starts with ‘Mi_’.

Every interface name starts with ‘Mii’.

Every interactive event handler starts with ‘MiI’.

Every action type name ends with ‘_ACTION’.

Every event type name ends with ‘_EVENT’.

Every attribute mask lock bit ends with ‘_ATTRIBUTE_MASK_BIT’.

Every border look ends with ‘_BORDER_LOOK’.

Every write mode ends with ‘_WRITEMODE’.

Every line end style ends with ‘_LINE_END_STYLE’.

Every line style ends with ‘_LINE_STYLE’.
2 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Nomenclature

s

ixels,

s.

ow
the
es-

e

nts

ill
wid-
og)

s.
. It

r
s

Every cursor ends with ‘_CURSOR’.

Every location ends with ‘_LOCATION’.

Every justification ends with ‘_JUSTIFIED’.

Nomenclature

1. Action An implementation of the MiiAction interface that is generated in
response to a change in a MiPart.

2. Action handler An implementation of the MiiActionHandler interface that, when
assigned to a MiPart, examines and optionally responds to MiiAction
generated by the MiPart.

3. Connection A visible link between two MiParts (one of which is thesource, the
other of which is thedestination), usually represented by a line.

4. Connection point The point at which a connection is attached to a MiPart.

5. Device space The coordinates associated with the output device. For example, p
if the output is the computer monitor.

6. Draw bounds The visible bounds of a MiPart, including shadows and attachment
The always contains the (outer) bounds of the MiPart.

7. Enter key focus The MiPart that has enter key focus will be the first part in it’s wind
to be sent an MiEvent (representing the enter key) if the enter key on
keyboard is pressed by the user. This is often used by dialog and m
sage boxes to implement their default button behavior.

8. Event An instance of the MiEvent class that is generated in response to th
user pressing keys on the keyboard or moving/using the mouse.

9. Event handler An implementation of the MiiEventHandler interface which, when
assigned to a MiPart, examines and optionally responds to the MiEve
received by the MiPart.

10. Hidden The MiPart is not viewable but still takes up screen real estate (it st
has non-reversed bounds). This is often used by dialog boxes when
gets are selectively displayed/hidden (based on the state of the dial
while the size of the dialog is to remain constant.

11. Inner bounds The bounds of the MiPart from the perspective of the MiPart’s part
This may be smaller than the outer bounds if the MiPart has a margin
may also be in an entirely different coordinate system than the oute
bounds (i.e. the inner bounds of a MiEditor are the world coordinate
and it’s outer bounds are the device coordinates).
The Mica Graphics Framework (4/19/98) DRAFT 1.02 3

Chapter 1 Introduction

ow
sses

 the

outs

e

art

n

d
tate

usu-

rt or

ally
sen-

 of

at

 of
12. Keyboard focus The MiPart that has keyboard focus will be the first part in it’s wind
to be sent an MiEvent (representing the key) whenever the user pre
keys on the keyboard.

13. Line end The start or end of a line or polyline. Line end styles specify what kind
of arrow is to be drawn at the start or end of the line. Line endsizes
specify the size of the arrow specified by the style.

14. Mouse focus The MiPart with the mouse focus is the topmost MiPart underneath
mouse pointer that accepts mouse focus.

15. Outer bounds The bounds of the MiPart. This is the bounds that is used by any lay
that the MiPart may be involved in.

16. Pan The scrolling of the contents of a MiEditor, not necessarily in just th
horizontal and vertical directions.

17. Pick To pick a shape means to return a boolean indicating whether the MiP
intersects a given point.

18. Pick List A pick list is a list of MiParts (from front to back) that intersect a give
point.

19. Reversed bounds The name for bounds (MiBounds) when they are in an uninitialize
state. (The name reversed comes from the fact that bounds in this s
have xmin > xmax and ymin > ymax, which are reversed).

20. Select The state of a MiPart when it is not deselected. The selected state is
ally set when the user clicks on the MiPart, resulting in some kind of
visual change to the part (handles or an outline appear around the pa
the part appearspressed).

21. Sensitive The state of a MiPart when it is not insensitive. Insensitive parts usu
are grayed-out and do not respond to the users actions. However, in
sitive parts still receive all MiEvents (e.g. to support context sensitive
help) and it is up to the part’s event handlers to check the sensitivity
the part.

22. Status bar focus The MiPart that has status bar focus is the part that has it’s status bar
help message currently displayed in any status bar message field.

23. Target List A list of MiParts, in a MiEvent object were under the mouse cursor
the time of the event (see pick list).

24. Target Path A list of MiParts, in a MiEvent object, that were the MiPart directly
under the mouse cursor, and all the MiParts’s containers, at the time
the event.

25. Tool hint The smallish window that displays thetool hint help message of the
MiPart which is currently under a paused mouse cursor.
4 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Nomenclature

pace
is

rt is

.

r a
26. Universe space The area within which the world space is constrained. The world s
can grow and shrink (zoom) and move (pan) around in this area. This
specified by thesetUniverse(MiBounds) method of the MiEditor class.

27. Visible The MiPart is viewable and has a non-reversed bounds. If the MiPa
invisible then it is not viewable and has essentially zero size.

28. World space The coordinate system that all MiParts contained in a MiEditor use

29. Zoom An increase in magnification (zoom in) of the MiParts in a MiEditor
(accomplished by reducing the size of the MiEditor’s world space) o
decrease in magnification (zoom out) of the MiParts in a MiEditor
(accomplished by increasing the size of the MiEditor’s world space).
The Mica Graphics Framework (4/19/98) DRAFT 1.02 5

Chapter 2 Overview

y arise.
CHAPTER 2 Overview

This chapter presents an overview of Mica and how it works.

Design Goals

Mica is unashamedly designed for the programmer. As such the top priorities are:

1. Maximize the ease of use of the current features

2. Maximize the number (while maintaining the orthogonality) of features

3. Maximize the ease of adding features

Performance and memory size problems are tackled on a case-by-case basis if and when the
6 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Features

ica

dgets
g both
, and

eated
ition
bjects

ard

ed to
input.
ze the
 move,
 be

 them.
f the
at are

rd and
nd com-

les’)

event
des
asks
Features

Written using Java (no native methods) and only a minimal amount of the AWT graphics API, M
is extremely portable.

Many graphics objects are provided including shapes (line, rectangle, text,...), connections, wi
(push buttons, tables, tree lists, combo boxes,...), windows, dialogs and message boxes (usin
native AWT frames and internal Mica frames), editors, choosers, pre-built menubars, toolbars
graphics editors.

Subclassing from a single highly functional base class, all graphics objects therefore can be tr
the same (reducing cognitive overhead), can be modified using their API or by using compos
(preventing the need for of a lot of subclassing), and combined and used by other graphics o
without regard to their actual type.

The availability of the source code, for both the library and applications, makes it straight forw
to mimic, copy-and-modify and debug.

A large number of behavioral objects, called event handlers, are provided which can be assign
any graphics object. These are used, for example, by all Mica widgets to respond to the user’s
Each event handler has an event->functionality translation table which can be used to customi
precise behavior of any graphics object. The event handlers provided support, zoom, select,
full-screen cursor, create connection, create text and much more. Special event handlers can
used to monitor and/or grab control of the event stream.

Events are Mica objects that contain useful information about the input event that generated
All geometric information in an event is automatically transformed to the local space of each o
event handlers that examine the event. The event also contains the list of graphics objects th
lie underneath the point where the event occurred.

Actions (generated by graphics objects) are differentiated from events (generated the keyboa
mouse). Actions have four phases: request, cancel (when the request was vetoed), execute a
mit.

World coordinates are used for all graphics objects for accuracy (using real numbers i.e. ‘doub
and display flexibility (magnification, birds-eye and fish-eye views, etc.). All transformations,
which can be assigned to any container, are automatically used by Mica.

Any and all modifications made to any graphics object (whether to it’s appearance, geometry,
handling or action handling) are automatically detected and accounted for by Mica. This inclu
but is not limited to updating layouts near the graphics object, updating the event and action m
of the graphics object and/or it’s containers, and redrawing the graphics object.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 7

Chapter 2 Overview

hat the

mber
on-
heads

r in the
n-
an be

ing is

inside
 inside
object
on-

rings
files:
-

les of
ndlers

 files).

ect
effects

essible
ng

 be a
. The
ar (a
Graphics objects are moved, resized, connected, reconnected, and animated in real-time so t
end-user does not get confused by ‘disappearing graphics’.

Connections are first class graphics objects and extensive support forhaving connections is
included in all graphics objects. Connections connect to graphics objects at common or any nu
of custom ‘connection points’. Connections are automatically moved and updated by Mica. C
nections are usually displayed as lines and can therefore have use of the dozen or so arrow
and tails supplied.

Attachments are graphics objects that are assigned to other graphics objects but do not appea
part-container hierarchy of a window. Attachments make it extremely easy to add ‘resizing ha
dles’ to a selected graphics object or to add a textfield widget to a connection. Attachments c
assigned to a variety of positions with respect to their ‘host’ graphics object and this position
automatically maintained by Mica.

Any graphics object can be assigned a layout. Some layouts specify the positions of the parts
a graphics object (i.e. a row layout), some specify the positions and connections of the parts
a graphics object (i.e. a star graph layout), and some specify a constraint between a graphics
and another (i.e. x is to the left of y). All widgets use layouts to specify the positions of their c
stituent shapes.

Full support for end-user and programmatic specification of properties is provided. All text st
and icons displayed by Mica and it’s applications can be changed using the plain ASCII text
defaults.mica andproperties.mica. In addition, the default widget properties and any application
specific properties can also be set in these files. Every graphics object has all 60 or so of it’s
attributes as properties in addition to any specific properties it may have. The translation tab
the event handlers assigned to a graphics object are also properties and in the future event ha
and widget prototype classes will also be able to be specified using properties (and property

Drag-and-Drop and Clipboard cut-copy-paste functionality is built-in to Mica. Any graphics obj
can be made a drag-and-drop source and/or target and actions for drag-over and drag-under
are generated by the drag-and-drop manager.

Undo-redo-repeatable commands objects are used by the event handlers and a globally acc
‘transaction manager’ collects these commands and manages them for programs written usi
Mica.

Extensive support for help is provided. Help can be assigned to any graphics object and can
plain text string or a object that describes the text and the attributes of the text and background
types of help are: toolhint (a smallish message), balloon (a larger toolhint with callout), statusb
8 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Architecture - The Layered Approach

x). The
dow.

ed with
after,

sses
nts
om-

ing in
erride
cking
message to be displayed in the status bar), dialog (a message to be displayed in a dialog bo
helpviewerclass formats and displays a very simple formatted text file as a navigable help win

Specialized renderers can be assigned to each graphics object. Default renderers are suppli
Mica. The types of renderers are: shadow, lineEnds, border, gradient, booleanState, before,
background, and visibility.

Architecture - The Layered Approach

Mica is layered as follows, such that the lower layers know nothing of the layers above:

• Mica Editors

• Mica Part Assemblies

• Mica Widgets

• Mica Parts, Containers and Shapes

• Mica MiRenderer, MiCanvas

• java.AWT Graphics

The AWT Layer

Mica uses the drawing capability of the AWT Graphics class, the AWT Frame and Dialog cla
for window handling, and AWT Canvas for drawing output and AWT Event handling. AWT Fo
and AWT Colors are using for rendering. Upon this is built a complete user-interface toolkit c
bined with a 2D vector graphics library and uponthisare application-sized widgets with which one
can easily create graphical applications.

The Mica-AWT Interface Layer
The AWT Graphics class is subclassed by MiRenderer which adds an API that supports draw
world coordinates, device coordinate specialized renderers and the pushing and popping of ov
attributes. The AWT Canvas class is subclassed by MiCanvas and adds support for window lo
and the event handling and animation thread.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 9

Chapter 2 Overview

nged
ophis-

,...)

ither

a
rting
ctions
m to
The Mica Construction Layer

All graphics (shapes, widgets, choosers, editors, windows) in Mica are MiParts, which are arra
in groups using MiContainers. Shapes (like line, circle, rectangle, text,...) are used by more s
ticated parts to create their appearance.

The Mica Widgets Layer
This layer contains standard widgets which are built using shapes and other widgets.

The Mica Parts Layer
This layer contains large assemblies of widgets into tools like choosers (font, color, line width
and pre-built menus, toolbars and main windows.

The Mica Editors Layer
This layer contains pre-built editors for graphing, drawing and diagramming that can be used e
as stand-alone windows or incorporated in other windows.

Event and Action Handling

Simply put: Mica manages an AWT Canvas in a AWT window, drawing Mica shapes and Mic
widgets in the Canvas, watching for AWT Events generated by the user in the Canvas, conve
them to Mica events, forwarding these events to the shapes and widgets, who generate Mica a
that larger assemblies of widgets do something intelligent with, just like the user intended the
do.
10 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiParts

a is a
ange,

ble,
ica has
rder
 para-

. This
ndled
CHAPTER 3 Parts

This chapter describes MiParts and how and why they are used. Just about everything in Mic
MiPart and Mica has been designed in order to provide many convenient ways to display, arr
manipulate, inquire and interact with these MiParts.

About MiParts

MiParts are the basic geometric construction element in Mica. They have a name, are drawa
have attributes, receive and process events, generate actions, and many more capabilities. M
been intentionally designed to have all parts be very powerful, full-featured objects. This is in o
to make programming with Mica easy and rewarding (when memory considerations become
mount, lightweight and very lightweight shapes can be used).

Through the use of containers and references, a part-container hierarchy can be constructed
event and action propagations, drawing and other aspects of this hierarchy is automatically ha
The Mica Graphics Framework (4/19/98) DRAFT 1.02 11

Chapter 3 Parts

ired

draw-

a and

 to set,

ave.

f it’s
in Mica.Many traditional convolutions associated with programming GUIs are no longer requ
with Mica. Much of the tedious ‘housekeeping’ is handled by Mica itself, wherever possible.
Examples of this are layout validation and invalidations, the enabling of actions and events, re
ing of shapes, etc.

The top levels of the MiPart Class Hierarchy

MiPart

MiMultiPointShape

MiConnection

MiContainer

MiEditor

MiLayout

MiVisibleContainer

MiWidget

MiPart Functionality Overview

This section lists the major areas of functionality of every MiPart and describes the basic ide
scope of each area.

Named Resources

MiParts have an unbounded array of named resources available for you to use and methods
get, remove and iterate through them.

Life and Death Management

MiParts have methods tocopy(), deepCopy(), deleteSelf(), removeSelf() (from all containers),
replaceSelf(MiPart)which are fully aware of any Attachments and Connections the part may h

Deep Connections

MiParts have methods which support the iteration through all connections of the part and all o
parts.

Drag and Drop Management
12 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiPart Functionality Overview

ethods
vior,

igned

ss-spe-
on-
nd

re are

, on
-left-

es
ns on
as

en
MiParts may be a source of and/or a target of a drag and drop operation. As such there are m
to indicate if such functionality is enabled (see MiAttributes), specify the drag and drop beha
how the part will import and export data and what their valid data formats are.

Attributes

There are numerous methods to set and get individual attributes of a MiPart as well as it’s ass
MiAttributes object.

Properties

Properties can be set and inquired and include all a MiPart’s attributes and additional subcla
cific properties. In addition, a MiPropertyDescription can be obtained for each property that c
tains information about the type of the value of the property and list all valid values (if finite) a
validate new values of the property.

Focus Management

Each part has the potential of having the current keyboard, mouse and/or enter-key focus. The
methods to request and inquire each kind of focus.

Select State, Sensitivity, and Visibility and Hidden State Management

There are methods to set and get the basic state of the MiPart.

Point Management

Methods to inquire, append, insert, and remove points are available for all MiParts. However
parts that are not MiMultiPointShapes, the available points are the lower-left-hand and upper
hand corners and they can be inquired only.

Geometry Management

There are extensive methods to inquire and modify the geometry of every MiPart. This includ
operations such as changing it’s size and position. These methods are grouped into operatio
the center, sides, height, width and bounds of the MiPart. In addition, basic operations such
translate, rotate and scale are available.

Pick Management

Pick management performs two functions: 1) indicating whether the MiPart intersects the giv
point and 2), returning a list of MiParts that intersect the given point.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 13

Chapter 3 Parts

their
o be
nd to

ods
ss of

is
er).

rred

of the
areas

g is
his is
Draw Management

MiParts have no draw methods that are available for your use; they are redrawn by Mica when
appearance or geometry changes. However there are methods to specify that the MiPart is t
drawn to and redrawn from a (double) buffer, to create an Image from an area of the MiPart, a
halt the current thread until the MiPart is redrawn (waitUntilRedrawn()). Note that a whole root
window can be double buffered by using the specialized methods on their MiCanvas object.

Attachment Management

MiParts have methods to append, inquire and remove attached MiParts.

Container Content Management

All MiParts have methods to append, inquire and remove other MiParts. However these meth
are only functional for MiContainers. Having MiPart implement these methods means a lot le
you having to explicitly test each MiPart to see if it is a MiContainer.

MiParts have methods that act on actual parts (appendPart(MiPart))and semantic parts: items
(appendItem(MiPart)). Items are usually actual parts except in cases like MiLists (where an item
a row in the list), and like MiEditors with layers (where items are the shapes in the current lay

Containers management

Methods are available to append, insert and inquire containers of the MiPart.

Bounds Management

Methods to set and get inner, outer and draw bounds and to set and get minimum and prefe
sizes (which override those of any layout associated with the MiPart).

Invalid Area Management

Each MiPart has methods to invalidate areas within it’s bounds, causing a subsequent redraw
MiPart. This, however, rarely if ever needs to be used because Mica automatically invalidates
that need it.

Other methods specify whether or not the MiPart is anopaque rectangle(the default is that it is not
unless it is an instance of MiEditor, MiTable or MiMenu). If it is a opaque rectangle then nothin
drawn underneath the MiPart. The MiPart is assigned a draw manager that takes care of this. T
useful for both speed of execution and for aesthetics of appearance.
14 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiPart Functionality Overview

e and
ly if

e avail-
n-

pend,

ally
nt
m
he

nter-

lly the
chap-
times
m-

d only
d with
Layout Management

Provided are the methods to set and get the MiiLayout assigned to the MiPart and to invalidat
test the validity of any such layout. The ability to invalidate the MiPart’s layout, however, rare
ever needs to be used because Mica automatically invalidates layouts that need it.

Connection Management

MiConnections can be appended, inserted, removed and inquired. Convenience methods ar
able to get all of a MiParts parents and children and to return whether of not the MiPart is co
nected to another, given, MiPart.

Connection Point Management

A MiConnectionPointManager can be assigned to the MiPart (See chapter on Connections).

Event Handling

Any number of event handlers can be assigned to any MiPart and MiParts have methods to ap
insert and remove and enable/disable event handlers.

If a event handler is assigned to the MiPart and is not position dependent then it is automatic
registered with the MiPart’s window (if and when it has a containing window) as a global eve
handler (i.e. a hot key/accelerator event handler. Similarly it will be automatically removed fro
the window if the event handler is removed from the MiPart or if the MiPart is removed from t
window).

There are also methods that inquire what events the MiPart (i.e. all of it’s event handlers) is i
ested in.

Action Handling

A large number of methods are provided to append, insert, and remove action handlers (actua
MiiActions that are to be dispatched to the MiiActionHandler are what are registered; see the
ter on Actions). A number of methods are also available to register callbacks, which are some
more convenient to code that action handlers and which simply send a text String to a MiiCo
mandHandler object.

Action Generation

A number of actions are generated directly by the MiPart class. Some of these are generate
when there is a action handler registered that is interested in the action. These will be marke
The Mica Graphics Framework (4/19/98) DRAFT 1.02 15

Chapter 3 Parts

art
at rep-

pos-
tions

tors.
r it’s
a *. The others will be generated and iterate through each action handler assigned to the MiP
looking for an interested handler. These others will then check a special composite handler th
resents the action handlers of all of the MiPart’s containers and their containers, etc. If this com
ite handler is interested, then the action is forwarded up the part-container hierarchy. The ac
generated by the MiPart are:

• Mi_COPY_ACTION

• Mi_REPLACE_ACTION

• Mi_DELETE_ACTION

• Mi_GOT_KEYBOARD_FOCUS_ACTION

• Mi_LOST_KEYBOARD_FOCUS_ACTION

• Mi_GOT_ENTER_KEY_FOCUS_ACTION

• Mi_LOST_ENTER_KEY_FOCUS_ACTION

• Mi_GOT_MOUSE_FOCUS_ACTION

• Mi_LOST_MOUSE_FOCUS_ACTION

• Mi_SELECTED_ACTION

• Mi_DESELECTED_ACTION

• Mi_HIDDEN_ACTION

• Mi_UNHIDDEN_ACTION

• Mi_PART_VISIBLE_ACTION

• Mi_PART_INVISIBLE_ACTION

• Mi_INVISIBLE_ACTION

• Mi_VISIBLE_ACTION

• Mi_DRAW_ACTION*

• Mi_SIZE_CHANGE_ACTION*

• Mi_POSITION_CHANGE_ACTION*

• Mi_GEOMETRY_CHANGE_ACTION*

• Mi_APPEARANCE_CHANGE_ACTION*

Manipulator Management

These few methods support two kinds of manipulators: part manipulators and layout manipula
For each of these manipulators there is a method to create the manipulator (for the MiPart o
16 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiPart Functionality Overview

r it’s

iPart.
 are
layout) and a method to get the manipulator that has already been assigned to the MiPart (o
layout) if any.

Special Containers Management

MiParts have 3 methods that return important containers of the MiPart. These methods are:

MiWindow getRootWindow()

MiEditor getContainingEditor()

MiWindow getContainingWindow()

Debug Management

There are a number of methods that are dedicated to helping track what is happening to the M
For example there is a getID() method that will a unique integer identifying the MiPart. There
also methods to iterate through event handlers and action handlers.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 17

Chapter 4 Editors

d inter-

d

 are a
iEd-

ive
CHAPTER 4 Editors

This chapter describes editors and how and why they are used. Editors are used to display an
act with MiParts.

About MiEditors

MiEditors are a direct subclass of MiContainer. MiParts contained in an MiEditor are displaye
using the transform as specified by the MiViewport associated to the editor.

Because an MiEditor is a subclass of MiPart, it can be assigned event handlers. In fact, there
number of event handlers supplied with Mica that are specifically designed to be assigned to M
itors. These event handlers provide most if not all of the functionality associated with interact
graphing and drawing editors.
18 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiViewports

the
g the

n be
at

 one
ormal
r cir-

nifica-

of the

ay
s will

ated

ivate
e
bclass
-

About MiViewports

Every MiEditor has an associated MiViewport. MiViewports are responsible for the mapping of
coordinates of MiParts to the coordinates of the pixels on the screen. We call this the mappin
transformation ofworld coordinates intodevice coordinates.

Because this transformation defaults to having a scale factor of 1.0, the world coordinates ca
considerednaturalor virtual devicecoordinates. This is because, for example, when specifying th
you want a 2 pixel margin between the outside of a MiTextField widget and a MiLabel widget
just specifies that the difference in coordinates is equal to 2 world coordinates. Then, under n
circumstances, the difference will be transformed into 2 device (pixel) coordinates. Under othe
cumstances, the margin will be expanded or shrunk in correspondence with the current mag
tion. This permits the intermingling of widgets and shapes to size correctly.

The maximum and minimum world coordinates are specified by the viewport’suniverseandmini-
verse. You can use these bounds are used to put limits on magnification levels and on the size
area the user pans around in.

The viewport should be manipulated by using methods on the MiEditor so that the MiEditor m
keep its internal state and layout up-to-date. In general, however, the supplied event handler
be sufficient to provide all desired functionality.

About Layers

The MiEditor has support for multiple layers. Each layer is a MiContainer. Layers are manipul
by using the corresponding methods in the MiEditor class.

About MiiEditorViewportSizeLayout

Because the MiEditor manages both the device and world coordinate spaces (through it’s pr
instance of the MiViewport class) it needs to know what to do with the world bounds when th
device bounds are changed. Therefore, each MiEditor has a specialized layout, which is a su
of MiiEditorViewportSizeLayout, which manages this. The default layout is MiEditorViewportS
izeIsOneToOneLayout, which keeps the sizes of the world spaces and device spaces equal.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 19

Chapter 4 Editors

s. The
nager.
About MiiSelectionManager

Each MiEditor has methods and an associated object that manages the selection of its MiPart
object is a subclass of MiiSelectionManager and the default is an instance of MiSelectionMa
20 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiWindows

ay and
CHAPTER 5 Windows

This chapter describes windows and how and why they are used. Windows are used to displ
interact with MiParts and may or may not be associated with a window created by AWT.

About MiWindows

MiWindows are a direct subclass of MiEditor.

The top levels of the Window Class Hierarchy

MiPart

MiContainer

MiEditor
The Mica Graphics Framework (4/19/98) DRAFT 1.02 21

Chapter 5 Windows

dow
e win-
hich

l-
in-
dow

heir

hose
MiWindow

MiNativeWindow

MiNativeDialog

MiNativeMessageDialog

MiInternalWindow

MiDialog

MiMessageDialog

About MiNativeWindows

MiNativeWindows are windows that are ultimately created and managed by the underlying win
system (e.g. AWT) and can be either windows, dialog boxes, or canvases. The contents of th
dow is always represented by a MiCanvas which is a subclass of the AWT Canvas. Windows w
have an associated AWT Canvas are calledroot windows. MiNativeWindows are managed by cal
ing methods on the MiNativeWindow class, however the associated java.awt.Frame of root w
dows is available (by using the getFrame() method) as is the java.awt.Canvas of any root win
(by using the getCanvas() method).

About MiNativeDialogs

MiNativeDialogs are a subclass of MiNativeWindow. They are constrained to stay in front of t
parent MiNativeWindow.

About MiNativeMessageDialogs

MiNativeMessageDialogs are a subclass of MiNativeDialog. They are a convenience class w
contents are automatically built from constructor arguments. MiToolkit has a number of static
methods that provide even more convenient methods to create, display and wait for a user’s
response to a native message dialog.
22 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiInternalWindows

oxes.

rent

ts are

is
on.

s
inter-

r class
sage
About MiInternalWindows

MiInternalWindows are created and managed by Mica and can be either windows or dialog b
If the window has a border then the border is managed by the MiWindowBorder class.

About MiDialogs

MiDialogs are a subclass of MiInternalWindow. They are constrained to stay in from of their pa
MiInternalWindow.

About MiMessageDialogs

MiMessageDialogs are a subclass of MiDialog. They are a convenience class whose conten
automatically built from constructor arguments.

About MiDragAndDropManager

MiNativeWindows have an associated instance of the MiDragAndDropManager class which
responsible for managing the pickup, drag and drop activities during a drag and drop operati

About MiKeyboardFocusManager

Native windows have an associated instance of the MiKeyboardFocusManager class which i
responsible for managing keyboard focus and enter key focus for the window. This includes
active traversal and programmatic modification and inquiry.

About MiStatusBarFocusManager

If the window has a status bar then it will have an instance of the MiStatusBarFocusManage
which is responsible for determining what MiPart has ‘status bar focus’ and what resultant mes
should be displayed in the status bar message field.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 23

Chapter 5 Windows

h
n is of
the
About MiiKeyFocusTraversalGroup

Every window has an instance of an implementation of the MiiKeyFocusTraversalGroup whic
manages the order of traversal for keyboard and enter key focuses. The default implementatio
the MiLazyKeyFocusTraversalGroup class which just examines the current set of MiParts in
window and chooses the next/previous valid candidate.
24 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About Shapes

 want to

text
vent han-

nding
CHAPTER 6 Shapes

This chapter describes shapes and how and why they are used. Shapes are used when you
display interactive geometric shapes.

About Shapes

Shapes are the geometric building blocks of Mica. There are rectangle shapes, line shapes,
shapes and many others. Because shapes are subclasses of MiPart they can be assigned e
dlers and therefore have interactive capabilities.

Some shapes, defined by a number of points (as opposed to those that are defined by a bou
box) are subclassed fromMiMultiPointShape . The MiMultiPointShape class adds a number of
methods to manipulate the defining array of points.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 25

Chapter 6 Shapes

 mem-
 (fox
l

these
 the

dd,
ica,

sing
ytes
blocks
ma-
thods
Because shapes are full-featured subclasses of MiParts they take up a significant amount of
ory (400+ bytes). They are therefore impractical for applications that have very many shapes
example ECAD PC boards with 100,000+ lines). To address this shortcoming two (2) specia
shapes are supported: theMiLiteShapesContainer andMiVeryLightweightShape.

MiLiteShapesContainer is a shape that contains objects of type MiLightweightShape. Each of
very small MiLightweightShape objects contains only enough information to support drawing
geometry of the shape and onetag to allow your application to keep track of the individual
MiLightweightShapes. The MiLiteShapesContainer class has methods with which you can a
remove and inquire its contents. There are a number of MiLightweightShapes provided with M
all of which have ‘Lite’ in their name (for example: MiArcLite).

MiVeryLightweightShape is for when your application needs even more memory savings and u
an object per shape is impractical (for example: MiArcLite takes 24 bytes + typically the 16 b
overhead that Java needs for house keeping = 40 bytes). MiVeryLightweightShape manages
of memory, typically 16K bytes in size, that are packed with only the minimal amount of infor
tion needed to define each geometric primitives. The MiVeryLightweightShape class has me
to allow adding, removing, and inquiring these geometric primitives.

Hierarchy

The definition of the shapes classes are contained in theshapes sub-directory. Here is the shape
class hierarchy:

MiPart

MiArc

MiCircle

MiEllipse

MiEllipticalArc

MiImage

MiLiteShapesContainer

MiMultiPointShape

MiLine

MiPolyline

MiPolyPoint

MiPolygon

MiTriangle

MiRectangle
26 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Full featured shapes

arts.
ality.

tances
ht-

on-
y

t-
MiRoundRectangle

MiText

MiVeryLightweightShape

MiLightweightShape

MiArcLite

MiCircleLite

MiEllipseLite

MiImageLite

MiLineLite

MiPointLite

MiPolyLineLite

MiPolyPointLite

MiPolygonLite

MiRectLite

MiTextLite

Full featured shapes

Full featured shapes are MiParts and so have the complete set of functionality found in all MiP
These trade off a large memory footprint and slower drawing speed for this rich set of function

Lightweight shapes

Light weight shapes are Objects, not MiParts, that are grouped into containers which are ins
of MiLiteShapesContainer. The MiLiteShapesContainer class is a subclass of MiPart. The lig
weight shapes inside the MiLiteShapesContainer inherit the attributes of the MiLiteShapesC
tainer (i.e. the are all the same color,...). These trade off less functionality for a small memor
footprint but retain the convenience of each shape still being an individual object.

Very lightweight shapes

Very lightweight shapes are just some raw data (i.e. ~4 doubles) in an instance of MiVeryLigh
weightShape. The MiVeryLightweightShape class is a subclass of MiPart. These shapes are
The Mica Graphics Framework (4/19/98) DRAFT 1.02 27

Chapter 6 Shapes

hese
imal

s type

s type
grouped into blocks of data (the default size is 2K). Basic attributes are specified as data in t
blocks along with the shapes. These trade off minimal functionality and convenience for a min
footprint (depending on block size and number of shapes, of course).

Rectangular Shapes

These are identified by the fact that their size can be specified by a MiBounds. Shapes of thi
are manipulated by MiBoundsManipulator and created by MiICreateObject.

Multi-Point Shapes

These are identified by the fact that the must be specified by a number of points. Shapes of thi
are manipulated by MiMultiPointManipulator and created by MiICreateMultiPointObject.
28 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiContainers

group

tance

 are
ers.
d in a
CHAPTER 7 Containers

This chapter describes containers and how and why they are used. You can use containers to
parts together, which can then be manipulated as a single part.

About MiContainers

A container is a type of Mica Part that you can use to contain other parts. A container is an ins
of the MiContainer class which is a subclass of the MiPart class.

The parts that are added to a container are not copied into the container. Instead references
made to the parts maintained by the container. Containers may indeed contain other contain
Mica provides many methods which can be used to add, remove and inquire the parts containe
container.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 29

Chapter 7 Containers

 con-
-
pport
on-
he bor-
A container can be assigned alayout(see the chapter on layouts). These layouts can be used to
arrange the parts within a container.

The Visible Container

There is a special type of container which can have a visible background and/or border. This
tainer is the MiVisibleContainer and it is a subclass of MiLayout which is a subclass of MiCon
tainer. It is used as the base class of all widgets in the user interface toolkit. It is also used to su
the special needs of other visually compact collections of shapes. To this end the MiVisibleC
tainer has special methods that allow specification of both the shape of the border and how t
der shrinks itself around its contents.
30 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiConnections

when

tions
d by a
ions
trically
CHAPTER 8 Connections

This chapter describes connections and how and why they are used. Connections are used
you want to connect two MiParts together using a visible line of some sort.

About MiConnections

Connections are instances of the class MiConnection which is a subclass of MiPart. Connec
connect two MiParts together, a source and a destination. Connections are visually represente
MiPart (accessed by setGraphics() and getGraphics()) which by default is a MiLine. Connect
automatically redraw themselves as their source and/or destinations move or change geome
in some way (i.e. they arerubberbanding connections).
The Mica Graphics Framework (4/19/98) DRAFT 1.02 31

Chapter 8 Connections

 by
f the

i.e. the

types
About Connection Points

Connections are attached to specificconnection points of the source and destinations, which by
default are Mi_CENTER_LOCATIONs. A number of connection points have been predefined
Mica, consisting of the 8 points of the compass and the center point. In addition, each point o
definition of the source and destination shapes can also be specified as the connection point (
4th point of a polyline).

And finally, custom connection points can be created that can supplement or replace the other
of connection points. This is accomplished by creating and assigning aMiConnectionPointMan-
ager to a source and/or destination of a connection.

About MiConnectionPointManagers

MiConnectionPointManagers manage the valid connection points of one or more MiParts.
32 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiWidgets

ant to

ible-
e

es:
CHAPTER 9 Widgets

This chapter describes widgets and how and why they are used. Widgets are used when you w
add standard user-interface form interactors like buttons and textfields to your program.

About MiWidgets

Mica widgets are subclasses of MiWidget and MiWidget is a MiPart that is a subclass of MiVis
Container. Widgets typically have their own event handlers to handle their interactions with th
end-user; however more can be added if desired.

Because widgets are MiVisibleContainers they can have any shape. There are 8 built-in shap

• RECTANGLE_SHAPE

• CIRCLE_SHAPE

• ROUND_RECTANGLE_SHAPE
The Mica Graphics Framework (4/19/98) DRAFT 1.02 33

Chapter 9 Widgets

id-
imi-

 the
n-

,
ate, the
o eas-

d,
e

• DIAMOND_SHAPE

• TRIANGLE_POINTING_UP_SHAPE

• TRIANGLE_POINTING_DOWN_SHAPE

• TRIANGLE_POINTING_RIGHT_SHAPE

• TRIANGLE_POINTING_LEFT_SHAPE

which can be assigned to the widget using thesetShape(int) method. Custom shapes can be
assigned using thesetShape(MiPart) method.

With the exception of MiTextField, widgets can contain any MiPart, which can be any other w
get, any shape, text, or whatever. This allows the creation of many unique-looking widgets. S
larly, widgets can be assigned event handlers which allows the creation of unique-behaving
widgets.

All widgets support the following methods to provide an easy way to set and get their primary
value(s) (what the primary value(s) are is dependent, of course, on the type of the widget).

setValue(String)
String getValue()
setContents(Strings)
Strings getContents()

A widget can be specified to be one of a group of widgets whose selection state depends on
group’s other widgets selection state. This is done by assigning to it the same MiRadioStateE
forcer that the other widgets have by using thesetRadioStateEnforcer(MiRadioStateEnforcer)
method.

Widget attributes

Widgets have an additional attribute bundlefor each state. There are 6 states: normal, insensitive
selected, keyboard focus, enter-key focus and mouse focus. Whenever the widget changes st
attributes for that state are automatically assigned to the widget. This allows the programmer t
ily specify that all widgets will react visually in the same state-triggered way.

For example, the default attributes assign a hilite border to widgets what have either keyboar
enter-key or mouse focus. Individual attributes of these attribute bundles can be set using th
MiToolkit class or by using specialized methods of the MiWidget class (for examplesetKeyboard-
FocusBackgroundColor(Color)). This feature can be disabled by using the widget’ssetAutoAttribu-
tesEnabled(boolean) method.
34 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Widget Hierarchy
Widget Hierarchy

MiPart

MiContainer

MiVisibleContainer

MiWidget

MiAdjuster

MiSlider

MiGauge

MiScrollBar

MiBox

MiLabel

MiButton

MiCheckBox

MiCircleToggleButton

MiMenuLauncherButton

MiOptionMenu

MiPushButton

MiSpinButton

MiToggleButton

MiMenuItem

MiComboBox

MiExpandoBox

MiLabeledWidget

MiMenu

MiMenuBar

MiOkCancelHelpButtons

MiPieChart

MiPlayerPanel

MiRadioBox

MiScrolledBox

MiStandardMenu

MiStatusBar

MiTabbedFolder

MiTable

MiList
The Mica Graphics Framework (4/19/98) DRAFT 1.02 35

Chapter 9 Widgets

 the

get’s

ally
ocus
abel

g
d

ters,
MiTreeList

MiTextField

MiWindowBorder

Standard Widgets

MiLabels
Many widgets subclass the MiLabel widget. This widget displays a MiPart (which is often an
instance of the MiText class) within a border. There is no interactive behavior associated with
MiLabel widget. If a string is assigned to the label (using either the constructor or the set-
Value(String) method) then an instance of the MiText class is automatically created. The wid
label can be retrieved for subsequent modification using theMiPart getLabel() method.

MiButtons

All buttons subclass the MiButton widget. The MiButton class has the capability of automatic
displaying a different label for each of the following states: Normal, Selected, Insensitive and F
(mouse and/or keyboard). This capability is activated by using the following methods (a null l
assigned to a state causes the button to display the normal label for that state).

setNormalLabel(String)
setNormalLabel(MiPart)
MiPart getNormalLabel()

and similar methods for SelectedLabel, InsensitiveLabel, and FocusLabel.

MiTable

The table widget is a sophisticated widget incorporating capabilities to organize MiParts usin
scrollable rectangular layouts with cell by cell margin, tag, justification, sizing, and backgroun
customizations; row/column sorting, selection and moving; row and column headers and foo
cells which can span rows and/or columns, and much more. MiList and MiTreeList subclass
MiTable and so MiTable’s functionality is available to them as well.

The MiTable Class
36 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiTable

ing:

s is
here
also

ns

ints on

-area
One of the basic methods of the MiTable class is:

addCell(int rowNumber, int columnNumber, MiPart part)

a rowNumber is the number of a row, starting from number zero or one of the following:

• MiTable.ROW_HEADER_NUMBER

• MiTable.ROW_FOOTER_NUMBER

similarly, a columnNumber is the number of a column, starting from zero, or one of the follow

• MiTable.COLUMN_HEADER_NUMBER

• MiTable.COLUMN_FOOTER_NUMBER

Another basic method is:

MiTableCell getCell(int rowNumber, int columnNumber)

For example:

getCell(2, 0).getGraphics().setToolHintMessage("This is a tool hint”);

The MiTableCell Class

Each cell in the table is represented by an instance of the MiTableCell. The MiTableCell clas
responsible for the drawing, picking, tag, and cell-specific margins, justification, and sizing (t
are also table-wide and row/column-wide margins, justification, and sizing options). Cells may
span multiple columns and or rows by using the MiTableCell’ssetNumberOfRows() andsetNum-
berOfColumns() methods.

The MiTableCells Class

MiTableCells is a collection of instances of MiTableCell and is useful for managing rows, colum
and areas of cells.

The MiTableSelectionManager Class

MiTableSelectionManager manages the selection of cells, rows, and columns and the constra
and graphical feedback of the browsing and selection of same.

The MiGridBackgrounds Class

MiGridBackgrounds manages the backgrounds of the table on a table-wide, row, column, cell
and cell-by-cell basis. It supports grid lines as well as arbitrary MiParts for the backgrounds.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 37

Chapter 9 Widgets
An example

MiPart createScrolledTable()
{
// Create the table
table = new MiTable();

// Create the row headers (at the left of the table)
table.addCell(MiTable.ROW_HEADER_NUMBER, 0, new MiText("row 0"));
table.addCell(MiTable.ROW_HEADER_NUMBER, 1, new MiText("row 1”));

// Create the column headers (the top of the table)
table.addCell(0, MiTable.COLUMN_HEADER_NUMBER, new MiText("column 0"));
table.addCell(1, MiTable.COLUMN_HEADER_NUMBER, new MiText("column 1"));

// Create the column footers (at the bottom of the table)
table.addCell(0, MiTable.COLUMN_FOOTER_NUMBER, new MiText("column 0"));
table.addCell(1, MiTable.COLUMN_FOOTER_NUMBER, new MiText("column 1"));

// Create an array of cells 3 rows and 2 columns in size
table.addCell(0, 0, new MiText("cell 0,0"));
table.addCell(0, 1, new MiText("cell 0,1"));
table.addCell(1, 0, new MiText("cell 1,0"));
table.addCell(1, 1, new MiText("cell 1,1"));
table.addCell(2, 0, new MiText("cell 2,0"));
table.addCell(2, 1, new MiText("cell 2,1"));

// Specify the minimum vertical size
table.setMinimumNumberOfVisibleRows(2);

// Specify the preferrred vertical size
table.setPreferredNumberOfVisibleRows(2);

// Specify when to add a vertical scrollbar
table.setMaximumNumberOfVisibleRows(2);

// Specify a tool hint for the cell in the upper left hand corner
table.getCell(0, 0).setToolHintMessage("This is cell 0,0”);

// Specify a special mouse cursor for the upper left hand corner
table.getCell(0, 0).setContextCursor(Mi_HAND_CURSOR);
38 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiTreeList

vide a
se of
eds
// Create a raised, beveled rectangle to use for each of the table’s cells
MiRectangle rect = new MiRectangle();
rect.setBorderLook(Mi_RAISED_BORDER_LOOK);
rect.setBackgroundColor(getBackgroundColor());
table.getBackgroundManager().appendCellBackgrounds(rect);

// Specify that the 1th column can resize horizontally in order the
// entire center of the table will be occupied horizontally
table.getMadeColumnDefaults(1).setColumnHorizontalSizing(Mi_EXPAND_TO_FILL);

// Make the table scrollable by putting it inside a scrolled box
MiScrolledBox scrolledBox = new MiScrolledBox(table);

// Specify that the scrolledBox fades in to whatever container it may have
scrolledBox.setBackgroundColor(Mi_TRANSPARENT_COLOR);
// Return the scrollable table
return(scrolledBox);
}

MiTreeList

The MiTreeList class subclasses the MiTable class. It adds a large number of methods to pro
convenient API for the programmer. In particular there are methods that directly support the u
a tag (i.e. user info) for each row in the tree list. This is most useful for the programmer who ne
to know what each row represents.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 39

Chapter 10 Attributes

you
ten to

MiAt-
cts of
CHAPTER 10 Attributes

This chapter describes attributes and how and why they are used. Attributes are used when
want to customize the appearance or behavior of a MiPart in a manner that Mica has been writ
support (for example to set the color of a MiPart to red).

About MiAttributes

Every MiPart has an associated collection of attributes, which are stored in an instance of the
tributes class. This collection contains attributes representing approximately 60 different aspe
a MiPart’s appearance and behavior.

Some major attributes are:

• Color

• BackgroundColor
40 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About Attribute Management

hed
am-
und

.set-
n-

his
ce-

er as

 and
nce
• BackgroundImage

• LineWidth

• Font

• BorderLook

• ContextMenu

• ContextCursor

• ToolHintMessage

• BalloonHelpMessage

• StatusHelpMessage

• DialogHelpMessage

About Attribute Management

Instances of the MiAttributes class can be explicitlyshared among any number of MiParts, but
usually, each MiPart has it’s own private instance (however, instances of MiAttributes are cac
and shared internally to Mica to increase both time and memory efficiency). Whenever, for ex
ple, the setColor() method is called on a MiPart, a new MiAttributes is created (or reused if fo
within the MiAttribute cache) consisting of the previous MiAttributes’s attribute values merged
with the new value of the color attribute.

Any attribute in an instance of a MiAttributes class can have it’s value beinherited from another
MiAttributes. This inheritance is specified on a attribute by attribute basis (by the MiAttributes
IsInheritedAttribute() method). Values are inherited from the attribute’s associated MiPart’s co
tainer. Additionally, if an attribute is set to a specific value then it will no longer inherit values. T
allows you tooverride any inherited value (e.g. the programmatically specified value takes pre
dence over any inherited value).

Widget attribute management has more functionality and you are urged to peruse that chapt
well.

The Attribute Methods

Every MiPart has a large number of attributes. The value of these attributes can be modified
inquired by either using specialized methods of the MiPart, by assigning an MiAttributes insta
The Mica Graphics Framework (4/19/98) DRAFT 1.02 41

Chapter 10 Attributes

lor of

s
st
ver-
to the MiPart, or by using one of the general methods of the MiPart. For example, to set the co
a MiPart p, one can do either

p.setColor(MiColorManager.blue)
p.setAttributeValue(Mi_COLOR_ATT_NAME, MiColorManager.blue)
p.setAttributes(p.getAttributes().setColor(MiColorManager.blue))

The MiPart general methods are:

void setAttributeValue(String name, Object value)
void setAttributeValue(String name, int value)
void setAttributeValue(String name, double value)
void setAttributeValue(String name, boolean value)
void setAttributeValue(String name, String value)
String getAttributeValue(String name)
boolean hasAttribute(String name)

See Appendix A for a detailed list of Attributes.

MiPushAttributes and MiPopAttributes

The MiPushAttributes part specifies what attributes are to be used when drawing any MiPart
which follow the MiPushAttributes part and come before a MiPopAttributes part or until the la
part in the root window is drawn. The attributes of a MiPushAttributes can be considered to ‘o
ride’ all attributes of succeeding parts.
42 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiiLayouts

y how
port
espec-

to-
e lay-

an
CHAPTER 11 Layouts

This chapter describes layouts and how and why they are used. You can use layouts to specif
parts are arranged within containers. There are many layouts provided with Mica. Some sup
graphs (nodes and their connections). Others support arrangements of a container’s parts irr
tive of any connections the parts may have.

About MiiLayouts

The layout interface, MiiLayout, has methods that, like the AWT Layout class, support the au
matic layout of associated parts. In addition, it has methods that allow the manipulation of th
out by specialized editors.

The primary layout object is MiLayout. This layout object is a subclass of MiContainer so it c
(but does not usually) contain the parts it is to layout (see Caveats).
The Mica Graphics Framework (4/19/98) DRAFT 1.02 43

Chapter 11 Layouts

r or to
 rectan-

cify
up-

nner
Shape Layouts

Shape layouts position shapes without regard to any connections they may have (to each othe
external shapes). These shape layouts are most often used to organize shapes together into
gular containers. The layouts supplied with Mica are:

• MiColumnLayout

• MiGridLayout

• MiRowLayout

These layouts have many sizing, justification and margin options that allow you to easily spe
that layout of most, if not all, of the situations you will encounter. The sizing options that Mica s
ports are:

• Mi_SAME_SIZE

• Mi_EXPAND_TO_FILL

The horizontal justification options are:

• Mi_LEFT_JUSTIFIED

• Mi_RIGHT_JUSTIFIED

• Mi_JUSTIFIED

• Mi_CENTER_JUSTIFIED

The vertical justification options are:

• Mi_BOTTOM_JUSTIFIED

• Mi_TOP_JUSTIFIED

• Mi_JUSTIFIED

• Mi_CENTER_JUSTIFIED

The margins that can be specified are:

• Inset The margins between the shapes as a group and their container’s i
boundry.

• Alley The horizontal/vertical distance between shapes.

• Cell The margin around each shape.
44 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Graph Layouts

. These

eLo-
me by
raint
Graph Layouts

Graph layouts position shapes with respect to the connections the shapes have to each other
graph layouts are most often used to organize shapes intonode-arc (icons and lines) graphs. The
layouts supplied with Mica are:

• Mi2DMeshGraphLayout

• MiCrossBarGraphLayout

• MiLineGraphLayout

• MiOmegaGraphLayout

• MiOutlineGraphLayout

• MiRingGraphLayout

• MiStarGraphLayout

• MiTreeGraphLayout

• MiUndirGraphLayout

Special Layouts

MiPolyLayout

The MiPolyLayout allows the assignment of multiple layouts to one MiContainer.

MiPolyConstraint

The MiPolyConstraint layout allows multiple constraints can be specified using the MiRelativ
cationConstraint class. Using this constraint class, many constraints can be specified at one ti
adding them to a single instance of the MiPolyConstraint class. The MiRelativeLocationConst
class supports many kinds of two-party (master-slave) constraints:

• LEFT_OF

• RIGHT_OF

• TOP_OF

• BOTTOM_OF

• INSIDE_LEFT_OF

• INSIDE_RIGHT_OF

• INSIDE_TOP_OF
The Mica Graphics Framework (4/19/98) DRAFT 1.02 45

Chapter 11 Layouts

ns
 of
• INSIDE_BOTTOM_OF

• CENTER_OF

• INSIDE_OF

• OUTSIDE_OF

• SAME_ROW_AS

• SAME_COLUMN_AS

• SAME_WIDTH_AS

• SAME_HEIGHT_AS

• SAME_WIDTH_AS_PRESERVE_ASPECT

• SAME_HEIGHT_AS_PRESERVE_ASPECT

• SAME_SIZE_AS

• SAME_SW_INSIDE_CORNER

• SAME_SE_INSIDE_CORNER

• SAME_NW_INSIDE_CORNER

• SAME_NE_INSIDE_CORNER

• SAME_SW_OUTSIDE_CORNER

• SAME_SE_OUTSIDE_CORNER

• SAME_NW_OUTSIDE_CORNER

• SAME_NE_OUTSIDE_CORNER

• INSIDE_LEFT_CENTER_OF

• INSIDE_RIGHT_CENTER_OF

• INSIDE_TOP_CENTER_OF

• INSIDE_BOTTOM_CENTER_OF

Manipulating Layouts

Most layouts (all except MiPolyLayout) can beeditedvisually by the end-user, if so desired. If the
layout is created with themanipulatable argument set to true, then:

• The layout can be initialized to have a minimum number of ‘nodes’ and the connectio
necessary to maintain the topology of the layout, if any. These ‘nodes’ are instances
MiPlaceHolder that can be replaced by dragged and dropped upon.
46 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Manipulating Layouts

t.

lay-
olders
eys
• Nodes can be added to the layout by dragging and dropping the nodes on the layou

• When the layout is selected by the end-user, it is assigned a ‘layout manipulator’ This
out manipulator can be used to insert or append more place holders, to delete place h
and nodes, to move the selection point (cursor) around the layout (using the cursor k
and page up, page down, home and end keys).
The Mica Graphics Framework (4/19/98) DRAFT 1.02 47

Chapter 12 Events

nt han-

tons or
nt gen-

t of
he

ore.
CHAPTER 12 Events

This chapter describes events and how and why they are used. You can use events and eve
dlers to add event-specific behavior to any part.

About MiEvents

Events are generated by Mica in response to the user moving the mouse, using the mouse but
using the keyboard. In addition there is a timer event generated every second and an idle eve
erated when no event has occurred for a specified amount of time.

Events are objects that are instances of the MiEvent class. They contain a significant amoun
information about the state of the system at the time of the event. This information includes t
location of the mouse (in both device and world coordinates), the list of parts underneath the
mouse, the parentage of the part immediately under the mouse, the time of the event and m
48 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiiEventHandlers

n be
er of

andler
ave

rs
ple-

the

n-

h
ved
ded,

he

 the
ity in
About MiiEventHandlers

Event handlers are objects that implement the MiiEventHandler interface. Event handlers ca
assigned to any MiPart. The MiEventHandler class is supplied with Mica and provides a numb
conveniences. For example, you can specify what events the event handler is interested in.

Event handlers all implement a method calledprocessEvent(). In this method you can perform
some computations and then optionallyabsorb the event to prevent anyone else from seeing the
event.

There are three (3) categories of event handlers that Mica recognizes. In addition, any event h
cangrab all events before they are forwarded to any other event handler (after these events h
been forwarded to all MiEventMonitors).

1. MiEventMonitors receive all events they are interested in at all times. MiEventMonito
cannot absorb events. This type of event handler is often used to im
ment things like the display of the current mouse x, y location, which
needs to be continuously updated, regardless of the current operation
user may be involved in.

2. MiShortCutHandlers receive all events they are interested in that occur within the wi
dow of the MiPart they are assigned to. This type of event handler is
often used to implement things like the ‘accelerators’ associated wit
buttons or menu items, which need to be automatically added, remo
or desensitized whenever the associated button or many items is ad
removed or desensitized.

3. MiEventHandlers receive all events they are interested that (optionally) occur within t
bounds of the MiPart they are assigned to.

Using MiiEventHandlers

Typically event handlers are assigned to MiParts to add ‘feel’ to a part. For example:

editor.appendEventHandler(new MiIZoomAroundMouse());

This adds a ‘feel’ such that when the user clicks the middle (shift+right) button of the mouse,
contents of the editor are magnified (de-magnified). The mapping of user events to functional
most event handlers is controlled by a easily accessible translation table.

MiParts has the following methods in support of MiiEventHandlers:

appendEventHandler(MiiEventHandler)
The Mica Graphics Framework (4/19/98) DRAFT 1.02 49

Chapter 12 Events

any of
d:

p’-
ated

e

ple

d-
mple

user
insertEventHandler(MiiEventHandler, int)
removeElementHandler(MiiEventHandler)
int getNumberOfEventHandlers()
MiiEventHandler getEventHandler(int)
MiiEventHandler getEventHandler(String)
MiiEventHandler getEventHandlerWithClass(String)
MiEvent[] getLocallyRequestedEventTypes()
setEventHandlingEnabled(boolean)
boolean getEventHandlingEnabled()
int dispatchEvent(MiEvent)

Mica-supplied MiiEventHandlers

These are the event handlers that are supplied with Mica. The trigger events associated with
these event handlers can be changed programmatically by using the MiEventHandler metho

setEventToCommandTranslation(String commandToGenerate, MiEvent event)

• MiIClickAndDrop - this event handler, when assigned to an MiEditor, creates a ‘stam
like behavior (i.e. each click of the left mouse button causes the creation of a associ
shape at the current mouse location).

• MiICreateConnection - this event handler, when assigned to an MiEditor, provides th
end-user the capability of interactively connecting shapes together with the mouse.

• MiICreateMultiPointObject - this event handler, when assigned to an MiEditor, pro-
vides the end-user the capability of interactively creating multi-point shapes (for exam
lines and polylines) with the mouse.

• MiICreateObject - this event handler, when assigned to an MiEditor, provides the en
user the capability of interactively creating shapes defined only by their size (for exa
rectangles and ovals) with the mouse.

• MiICreateText - this event handler, when assigned to an MiEditor, provides the end-
the capability of interactively creating text with the mouse and keyboard.

• MiIDeleteObjectUnderMouse -

• MiIDeleteSelectedObjects

• MiIDeselectAll

• MiIDisplayContextCursor

• MiIDisplayContextMenu
50 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Mica-supplied MiiEventHandlers
• MiIDisplayHelpDialog

• MiIDisplayToolHints

• MiIDragAndCopyWithMouse

• MiIDragBackgroundPan

• MiIDragObjectUnderMouse

• MiIDragSelectedObjects

• MiIDragger

• MiIExecuteActionHandler

• MiIExecuteCommand

• MiIFlowEditorEventHandler

• MiIFullScreenCurso

• MiIJumpPan

• MiIMouseEnterAndExit

• MiIMouseFocus

• MiINormalizedPan

• MiIOnePtPan

• MiIPan

• MiIPartInspector

• MiIPopup

• MiISetDebugTraceModes

• MiIPrintGraphicsStructures

• MiIPrintPostScript

• MiIReCalcLayouts

• MiIRedraw

• MiIRubberbandBounds

• MiIRubberbandPoint

• MiISelectArea

• MiISelectObjectUnderMouse

• MiIZoomArea

• MiIZoomAroundMouse

• MiPlayEventSound
The Mica Graphics Framework (4/19/98) DRAFT 1.02 51

Chapter 13 Actions

on han-

ed

t

ified
CHAPTER 13 Actions

This chapter describes actions and how and why they are used. You can use actions and acti
dlers to add action-specific behavior to any MiPart.

About MiiActions

Actions are generated by Mica in response to the changes in a MiPart. These are changes likeselec-
tion, deletion, andmovement. In addition many specialized shapes, like widgets, have specializ
actions that they generate (for examplescrolled).

Actions are objects that are implementations of the MiiAction class. They contain a significan
amount of information about the state of the MiPart at the time of the action. This information
includes the type of the action, user information, MiPart-specific information and a user-spec
named property list.
52 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiiActionHandlers

e

at

turns
he

n be
 the
 their

then
n-

tions
any
There are four (4) differentphases of actions that Mica generates.

• An action is generated with theRequest phase to give any registered action handlers th
opportunity to veto the action

• An action is generated with theCancelphase to inform any registered action handlers th
the action was vetoed

• An action is generated with theExecute phase to allow any registered action handler to
actually execute the change the action represents

• An action is generated with theCommit phase to inform any registered action handlers
that the change the action represents has occurred

Actions will be absorbed in the Request, Execute and Commit phases if an action handler re
False. Only some actions will have an Execute phase. The phase can be inquired by using t
action’s isPhase(int phase) method or by using:

isRequestPhase()
isCancelPhase()
isCommitPhase()
isExecutePhase()

About MiiActionHandlers

Action handlers are objects that implement the MiiActionHandler interface. Action handlers ca
assigned to any MiPart. This is accomplished by registering the corresponding MiiAction with
MiPart. Whenever an MiiAction is dispatched, it is these registered actions that are passed to
corresponding MiiActionHandlers.

Using MiiActions and MiiActionHandlers

MiiActionHandlers have only one required method:

boolean processAction(MiiAction action)
This method can inquire (if necessary) the MiiAction to see what action actually occurred and
preform any functionality desired. Subsequently it will return True, if it is OK that other MiiActio
Handlers see this action, or False, if not (i.e. absorbs the MiiAction).

Actions are only dispatched if they have been registered with a MiPart (as noted above: MiiAc
are registered with MiParts, and MiiActionHandlers are assigned to MiiActions). There are m
convenience methods available to register MiiActions. The simplest of which is:
The Mica Graphics Framework (4/19/98) DRAFT 1.02 53

Chapter 13 Actions

e
be:

. An

e
 this

ction

 han-

-

ly
is
on.

 your
void MiPart.appendActionHandler(MiiAction action)
MiiActionHandlers are typically assigned to MiiActions in the MiiAction’s constructor:

public MiAction(MiiActionHandler handler, int validActionType)
The type of the action, specified using thevalidActionTypeparameter, can be one of many availabl
action types (which are specified in the file: MiiActionTypes.java). An example of a type would

MiiActionTypes.Mi_SELECTED_ACTION
In addition, the type parameter can include information about the phase of the desired action
example might be:

MiiActionTypes.Mi_SELECTED_ACTION
+ MiiActionTypes.Mi_REQUEST_ACTION_PHASE

In addition, the type parameter can include information about whether actions that occur in th
parts of the MiPart that the MiiAction is registered with are desired. The options available for
are:

MiiActionTypes.Mi_ACTIONS_OF_PARTS_OF_OBSERVED
This will cause the actions ONLY of the parts of the MiPart to be dispatched to the registered a
handler.

MiiActionTypes.Mi_ACTIONS_OF_OBSERVED
This will cause the actions ONLY of the MiPart itself to be dispatched to the registered action
dler. This is the default.

MiiActionTypes.Mi_ACTIONS_OF_PARTS_OF_OBSERVED
+ MiiActionTypes.Mi_ACTIONS_OF_OBSERVED

This will cause the actions of BOTH the parts of the MiPart AND of the MiPart itself to be dis
patched to the registered action handler.

Note that during registration and de-registration of MiiActions with MiParts, Mica automatical
enables and disables the propagation of MiiActions. In this way no time or aesthetic penalty
incurred by your code because of the need to explicitly enable and disable each specific acti

Examples of Using MiiActions and
MiiActionHandlers

For example, if you wanted to be notified whenever the user drags and drops something into
MiEditor you might have:

class myDrawEditor extends MiEditorWindow implements MiiActionHandler
{
public myDrawEditor()
54 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Examples of Using MiiActions and MiiActionHandlers

en
{
super("myDrawEditor", new MiBounds(0.0, 0.0, 500.0, 500.0));
buildEditorWindow();
getEditor.setIsDragAndDropTarget(true);
getEditor().appendActionHandler(new MiAction(this,

 Mi_DATA_IMPORT_ACTION);
}

public boolean processAction(MiiAction action)
{
if (action.hasActionType(Mi_DATA_IMPORT_ACTION))

{
// Your code here...
}

return(true);
}

}

If you also wanted to be notified when something is dropped on top of MiParts in the editor th
you would add the following:

class myDrawEditor extends MiEditorWindow implements MiiActionHandler
{
public myDrawEditor()

{
super("myDrawEditor", new MiBounds(0.0, 0.0, 500.0, 500.0));
buildEditorWindow();
getEditor.setIsDragAndDropTarget(true);
getEditor().appendActionHandler(new MiAction(this,

Mi_DATA_IMPORT_ACTION);
getEditor().appendActionHandler(new MiAction(this,

Mi_DATA_IMPORT_ACTION
+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED));

}
public boolean processAction(MiiAction action)

{
if (action.hasActionType(Mi_DATA_IMPORT_ACTION))

{
// Your code here...
}

else if (action.hasActionType(Mi_DATA_IMPORT_ACTION
+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED))
The Mica Graphics Framework (4/19/98) DRAFT 1.02 55

Chapter 13 Actions

hen
{
// Your code here...
}

return(true);
}

}

Then if you also wanted to allow drag and dropping on only some of the MiParts in the editor t
you could assure that they haveisDragAndDropTarget() equal to false, or if whether the parts are
valid targets depends on what is being dropped on them, the one would add the following:

class myDrawEditor extends MiEditorWindow implements MiiActionHandler
{
public myDrawEditor()

{
super("myDrawEditor", new MiBounds(0.0, 0.0, 500.0, 500.0));
buildEditorWindow();
getEditor.setIsDragAndDropTarget(true);
getEditor().appendActionHandler(new MiAction(this,

Mi_DATA_IMPORT_ACTION,
Mi_DATA_IMPORT_ACTION

+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED,
Mi_DATA_IMPORT_ACTION

+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED
+ Mi_REQUEST_ACTION_PHASE));

}
public boolean processAction(MiiAction action)

{
if (action.hasActionType(Mi_DATA_IMPORT_ACTION))

{
// Your code here...
}

else if (action.hasActionType(Mi_DATA_IMPORT_ACTION
+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED))
{
// Your code here...
}

else if (action.hasActionType(Mi_DATA_IMPORT_ACTION
+ Mi_ACTIONS_OF_PARTS_OF_OBSERVED

+ Mi_REQUEST_ACTION_PHASE))
{

56 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Methods to Assign Actions/Handlers to MiParts
MiDataTransferOperation transfer
= (MiDataTransferOperation)action.getActionSystem-

Info();
MiPart obj = (MiPart)transfer.getSource();
MiPart target = transfer.getTarget();
// boolean valid;
// Your code here to check validity of obj dropping on target
// if (!valid)

action.veto()
}

return(true);
}

}

Methods to Assign Actions/Handlers to MiParts

MiiAction Methods

appendActionHandler(MiiAction action)
 insertActionHandler(MiiAction action, int index)
 removeActionHandler(MiiAction action)

MiiActionHandler Methods

 removeActionHandlers(MiiActionHandler handler)
 appendActionHandler(MiiActionHandler handler, int validAction)
 appendActionHandler(MiiActionHandler handler, int validAction1, int

validAction2)

MiiCommandHandler Methods

 appendCallback(MiiCommandHandler command, String argument, MiEvent
event)

 appendCallback(MiiCommandHandler command, String argument, int validAc-
tions)

 appendCallback(MiiCommandHandler command, String argument)
 removeCallback(MiiCommandHandler command)
 removeCallback(MiiCommandHandler command, String argument)

MiEvent Methods
The Mica Graphics Framework (4/19/98) DRAFT 1.02 57

Chapter 13 Actions
 insertActionHandler(MiiAction action, MiEvent event, int index)
 appendActionHandler(MiiAction action, MiEvent event)

Action Types

These are found in MiiActionTypes.java.

Mi_CREATE_ACTION

Mi_DELETE_ACTION

Mi_COPY_ACTION

Mi_REPLACE_ACTION

Mi_REPLACE_PARENT_ACTION

Mi_DRAG_AND_DROP_PICKUP_ACTION

Mi_DRAG_AND_DROP_MOVE_ACTION

Mi_DRAG_AND_DROP_ENTER_ACTION

Mi_DRAG_AND_DROP_EXIT_ACTION

Mi_DRAG_AND_DROP_PAUSE_ACTION

Mi_DRAG_AND_DROP_CONTINUE_ACTION

Mi_DRAG_AND_DROP_CANCEL_ACTION

Mi_DRAG_AND_DROP_COMMIT_ACTION

Mi_SELECTED_ACTION

Mi_DESELECTED_ACTION

Mi_ACTIVATED_ACTION

Mi_SELECT_REPEATED_ACTION

Mi_GOT_MOUSE_FOCUS_ACTION

Mi_LOST_MOUSE_FOCUS_ACTION

Mi_GOT_KEYBOARD_FOCUS_ACTION

Mi_LOST_KEYBOARD_FOCUS_ACTION

Mi_GOT_ENTER_KEY_FOCUS_ACTION

Mi_LOST_ENTER_KEY_FOCUS_ACTION

Mi_INVISIBLE_ACTION

Mi_VISIBLE_ACTION

Mi_PART_VISIBLE_ACTION
58 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Action Types
Mi_PART_INVISIBLE_ACTION

Mi_HIDDEN_ACTION

Mi_UNHIDDEN_ACTION

Mi_TEXT_CHANGE_ACTION

Mi_MENU_POPPED_UP_ACTION

Mi_MENU_POPPED_DOWN_ACTION

Mi_TABBED_FOLDER_OPENED_ACTION

Mi_TABBED_FOLDER_CLOSED_ACTION

Mi_INVALID_VALUE_ACTION

Mi_VALUE_CHANGED_ACTION

Mi_ENTER_KEY_ACTION

Mi_NODE_EXPANDED_ACTION

Mi_NODE_COLLAPSED_ACTION

Mi_ITEM_SELECTED_ACTION

Mi_ITEM_DESELECTED_ACTION

Mi_ITEM_BROWSED_ACTION

Mi_ITEM_DEBROWSED_ACTION

Mi_ITEM_ADDED_ACTION

Mi_ITEM_REMOVED_ACTION

Mi_ALL_ITEMS_SELECTED_ACTION

Mi_ALL_ITEMS_DESELECTED_ACTION

Mi_NO_ITEMS_SELECTED_ACTION

Mi_ONE_ITEM_SELECTED_ACTION

Mi_MANY_ITEMS_SELECTED_ACTION

Mi_ITEM_SCROLLED_ACTION

Mi_ITEMS_SCROLLED_AND_MAGNIFIED_ACTION

Mi_EDITOR_VIEWPORT_CHANGED_ACTION

Mi_EDITOR_WORLD_TRANSLATED_ACTION

Mi_EDITOR_WORLD_RESIZED_ACTION

Mi_EDITOR_DEVICE_TRANSLATED_ACTION

Mi_EDITOR_DEVICE_RESIZED_ACTION

Mi_EDITOR_UNIVERSE_RESIZED_ACTION

Mi_EDITOR_CONTENTS_GEOMETRY_CHANGED_ACTION
The Mica Graphics Framework (4/19/98) DRAFT 1.02 59

Chapter 13 Actions
Mi_WINDOW_CLOSE_ACTION

Mi_WINDOW_ICONIFY_ACTION

Mi_WINDOW_DEICONIFY_ACTION

Mi_WINDOW_OPEN_ACTION

Mi_WINDOW_OK_ACTION

Mi_WINDOW_CANCEL_ACTION

Mi_WINDOW_FULLSCREEN_ACTION

Mi_WINDOW_NORMALSIZE_ACTION

Mi_CLIPBOARD_NOW_HAS_DATA_ACTION

Mi_TRANSACTION_MANAGER_CHANGED_ACTION

Mi_DATA_IMPORT_ACTION

Mi_CONNECTION_SOURCE_ACTION

Mi_CONNECTION_DESTINATION_ACTION

Mi_CONNECTED_ACTION

Mi_STATUS_BAR_FOCUS_CHANGED_ACTION

Mi_ICONIFY_ACTION

Mi_DEICONIFY_ACTION

Mi_GROUP_ACTION

Mi_UNGROUP_ACTION

Mi_GEOMETRY_CHANGE_ACTION

Mi_SIZE_CHANGE_ACTION

Mi_POSITION_CHANGE_ACTION

Mi_APPEARANCE_CHANGE_ACTION

Mi_DRAW_ACTION

About MiActionManager

This class is a globally accessible (i.e. it is a singleton) API to the action registry. All possible
action types and their names are registered here.

The MiActionManager allows components outside of Mica to generate actions that look and
behave just like Mica’s built-in actions. This is accomplished by the component registering it’s
60 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiActionManager

alues

 the
unique action names with this manager and getting back unique action type values. These v
can be used anywhere just like Mica action types.

For example: the Mica-supplied MiPlayerPanel class contains the following lines which allow
users of the class to access and use it’s action type Mi_PLAYER_PANEL_ACTION just like a
Mica built-in action types:

public static final String Mi_PLAYER_PANEL_ACTION_NAME
= "playerPanelStateChange";

public static final int Mi_PLAYER_PANEL_ACTION
= MiActionManager.registerAction(Mi_PLAYER_PANEL_ACTION_NAME);
The Mica Graphics Framework (4/19/98) DRAFT 1.02 61

Chapter 14 Part Assemblies

emblies

on.
on-

i-
CHAPTER 14 Part Assemblies

This chapter describes part assemblies and how and why they are used. You can use part ass
to easily and quickly build entire graphical applications.

MiEditorWindow

The MiEditorWindow is a complete, customizable main window for a typical graphics applicati
It is a subclass of MiNativeWindow. Using the buildEditorWindow() method, one creates the c
tents of the window including a MiEditorMenuBar, MiEditorToolBar, MiEditorStatusBar, MiEd
torPalette and, of course, a scrollable MiEditor.
62 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Menubars

he
ii-
 the
s in
dow)

 a
ti-

 is a
he
se
 a
MiiCommandManager

The MiiCommandManager interface (and it’s MiCommandHandler implementation) support t
registration of MiWidget-command pairs. The MiEditorMenuBar and MiEditorToolBar take a M
CommandManager as an argument and register all of their widgets and their commands with
MiiCommandManager. Since MiEditorWindow implements MiiCommandManager it just passe
itself as an argument to these classes. The MiiCommandManager interface (and MiEditorWin
support the following methods:

setCommandAvailability(String command, boolean flag)
setCommandAvailability(String command, boolean flag, String statusHelpMsg)
setCommandState(String command, boolean flag)
setCommandState(String command, String state)
setCommandLabel(String command, String label)
setCommandOptions(String command, Strings options)

These methods set the sensitivity, the state of a boolean widget, the current value of
multi-valued widget, the label of a button-like of menuitem-like widget, or the values of a mul
valued widget. For example:

myEditorWindow.setCommandAvailability(Mi_SAVE_COMMAND_NAME, false);

will cause both the ‘Save’ menuitem and toolbar button to be insensitive (grayed-out).

Menubars

Mica-supplied menubars are similar to Mica toolbars (See section on Toolbars below). There
base functionality and then there is an implementation using that functionality that provides t
most common features that can also be programmatically added to or removed from. The ba
functionality is provided by the MiMenubar class. The supplied implementation is provided by
quite of pulldown menus that are supported by the MiEditorMenuBar class.

The Class Hierarchy

MiMenuBar

MiEditorMenuBar

MiiContextMenu

MiEditorMenu

MiConnectMenu

MiEditMenu
The Mica Graphics Framework (4/19/98) DRAFT 1.02 63

Chapter 14 Part Assemblies

nd in
ssoci-
nus

c keys
MiFileMenu

MiFormatMenu

MiGraphMenu

MiHelpMenu

MiLayoutMenu

MiShapeMenu

MiToolsMenu

MiViewMenu

MiCommand

MiCommandWidgetCommand

MiConnectMenuCommands

MiEditMenuCommands

MiFileMenuCommands

MiFormatMenuCommands

MiGraphMenuCommands

MiHelpMenuCommands

MiLayoutMenuCommands

MiShapeMenuCommands

MiToolsMenuCommands

MiViewMenuCommands

The EditorMenuBar

The supplied implementation provides support for a menubar with the features frequently fou
graphics editor applications. This includes a number of standard pulldown menus and their a
ated functionality. This menubar can be customized by adding and/or removing pulldown me
and pulldown menu options.

This menubar is created by theMiEditorMenuBar class. It includes the standard File, Edit, View,
Shape, Connect, Format and Help pulldown menus. All standard accelerators and mnemoni
are automatically supported. The pulldowns include the following functionality:

File

• New...

• Open...

• Save

• Save As...

• Close
64 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Menubars

he

s-
ed if

i-
ed if

i-
e clip-

i-
e clip-

i-
itor
f the

abled

c-

isi-
d and

g
This
• Print Setup...

• Print

• Quit

Edit

This menubar pulldown is activated by clicking on ’Edit’ in the menubar or by using t
short cut key Meta-E.

• Undo Activated with mouse or short cut key Ctrl-W (or key ’u’ if menu is vi
ible). Causes the undoing of the last editing operation. This item is disabled and dimm
there is nothing to undo.

• Redo Activated with mouse or short cut key Ctrl-Z (or key ’r’ if menu is vis
ble). Causes the undoing of the last editing operation. This item is disabled and dimm
there is nothing to redo, if nothing has been undone.

• Cut Activated with mouse or short cut key Ctrl-Y (or key ’t’ if menu is vis
ble). Causes the removal of any selected items in the editor area, moving them to th
board. This item is disabled and dimmed if there is nothing selected in the editor.

• Copy Activated with mouse or short cut key Ctrl-C (or key ’c’ if menu is vis
ble). Causes the copying of any selected items in the editor area, moving them to th
board. This item is disabled and dimmed if there is nothing selected in the editor.

• Paste Activated with mouse or short cut key Ctrl-V (or key ’p’ if menu is vis
ble). Causes the copying of any items in the clipboard to the center of the current ed
area. This item is disabled and dimmed if there is something selected in the editor or i
clipboard is empty.

• Delete Activated with mouse or short cut key <delete> (or key ’d’ if menu is
visible). Causes the deletion of any selected items in the editor area. This item is dis
and dimmed if there is nothing selected in the editor.

• Select All Activated with mouse (or key ’s’ if menu is visible). Causes the sele
tion of all items in the editor.

• Deselect All Activated with mouse or short cut key <Esc> (or key ’a’ if menu is v
ble). Causes the de-selection of any selected items in the editor. This item is disable
dimmed if there is nothing selected in the editor.

• Duplicate Activated with mouse (or key ’l’ if menu is visible). Causes the copyin
of any selected items in the editor. The copies are placed next to their copied items.
item is disabled and dimmed if there is nothing selected in the editor.

View
The Mica Graphics Framework (4/19/98) DRAFT 1.02 65

Chapter 14 Part Assemblies

cut

ut-
ect-
ics

 in to

ton
u
cking
d

-
.e.

is
tion

s
led

is

ar.

e

t cut

is
hape.
o be
cted
This menubar pulldown is activated by clicking on ’View’ in the menubar or by using the short
key Meta-V.

• Zoom In Activated by selecting menu item or by clicking the middle mouse b
ton (with or without the shift or control key held down) inside the graphics editor. Sel
ing the menu item causes the zoom in to be centered around the middle of the graph
editor. Clicking the middle mouse button inside the graphics editor causes the zoom
be centered around the current mouse position.

• Zoom Out Activated by selecting menu item or by clicking the right mouse but
(with the shift or control key held down) inside the graphics editor. Selecting the men
item causes the zoom in to be centered around the middle of the graphics editor. Cli
the middle mouse button inside the graphics editor causes the zoom in to be centere
around the current mouse position.

• View All Activated with mouse or short cut key Ctrl-W (or key ’a’ if menu is vis
ible). Causes the editor to ’zoom all of the way out’ and the scrollbars to disappear (i
sets the magnification to the smallest possible value).

• View Previous Activated with mouse or short cut key Ctrl-R (or key ’p’ if the menu
visible). Causes the view in the editor to return to the previous location and magnifica
level. This item is disabled and dimmed if there isn’t a previous view.

• View Next Activated with mouse or short cut key Ctrl-T (or key ’n’ if the menu i
visible). Causes the view in the editor to advance to the next view. This item is disab
and dimmed if there is no next view (i.e. ’view previous’ has not been used).

• Redraw Activated with mouse or short cut key Ctrl+L ((or key ’r’ if the menu
visible).

• Toolbar Activated with mouse. This item toggles the visibility of the tool bar.

• Status Bar Activated with mouse. This item toggles the visibility of the status b

• Birds Eye View Activated with mouse. This item toggles the visibility of the birds-ey
view. <NOT IMPLEMENTED>.

Shape

This menubar pulldown is activated by clicking on ’Shape’ in the menubar or by using the shor
key Meta-S.

• Group Activated with mouse or short cut key Ctrl-G (or key ’g’ if the menu
visible). This item causes the selected shapes in the editor to be combined into one s
Henceforth moving this one shape will move all it’s constituent shapes and it can als
collapsed into a single icon. This item is disabled and dimmed if there is nothing sele
in the editor.
66 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Menubars

is
eir

 This

laced
edi-

psed
 edi-

f any
e edi-

 is
dese-

ditor.

ditor
led

editor
med

hort

ditor
s as
des

ditor
med
• Ungroup Activated with mouse or short cut key Ctrl-U (or key ’u’ if the menu
visible). This item causes the selected shapes in the editor to be decomposed into th
constituent shapes. Henceforth these constituent shapes can be moved individually.
item is disabled and dimmed if there is nothing selected in the editor.

• Iconify Activated with mouse or short cut key Ctrl-T (or key ’c’ if the menu is
visible). This item causes the selected shapes in the editor to be grouped and then rep
with a single icon. This item is disabled and dimmed if there is nothing selected in the
tor.

• DeIconify Activated with mouse or short cut key Ctrl-E (or key ’x’ if the menu is
visible). This item causes the selected shapes in the editor that were previously colla
to be ungrouped. This item is disabled and dimmed if there is nothing selected in the
tor.

• Bring to Front Activated with mouse or short cut key Ctrl-F (or key ’f’ if the menu is
visible). This item causes the selected shapes in the editor to be brought to the front o
deselected shapes. This item is disabled and dimmed if there is nothing selected in th
tor.

• Send to Back Activated with mouse or short cut key Ctrl-B (or key ’b’ if the menu
visible). This item causes the selected shapes in the editor to be sent to be behind any
lected shapes. This item is disabled and dimmed if there is nothing selected in the e

• Bring Forward Activated with mouse. This item causes each selected shape in the e
to be brought in front of the shape that is immediately in front of it. This item is disab
and dimmed if there is nothing selected in the editor.

• Send Backward Activated with mouse. This item causes each selected shape in the
to be sent to be behind the shape immediately behind it. This item is disabled and dim
if there is nothing selected in the editor.

Connect

This menubar pulldown is activated by clicking on ’Connect’ in the menubar or by using the s
cut key Meta-C.

• Connect Activated with mouse. This item causes each selected shape in the e
to be connected to every other selected shape in the editor. The type of connection i
specified in the toolbar. This item is disabled and dimmed if there is less than two no
selected in the editor.

• Disconnect Activated with mouse. This item causes each selected shape in the e
to be disconnected from every other shape in the editor. This item is disabled and dim
if there is nothing selected in the editor.

Format
The Mica Graphics Framework (4/19/98) DRAFT 1.02 67

Chapter 14 Part Assemblies

ort

es

s
evi-

lace
s.

t cut

on-

lp
s in the

lp
r (at

ere is
so be
lBar

upled
an
 the
This menubar pulldown is activated by clicking on ’Format’ in the menubar or by using the sh
cut key Meta-O.

• Expand Editing Area Activated with mouse. This item causes the area in which shap
appear in the editor to be enlargened.

• Shrink Editing Area Activated with mouse. This item causes the area in which shape
appear in the editor to be reduced in size. This item only shrinks the area if it was pr
ously expanded.

• AutoPlace Activated with mouse. This item causes an attempt to be made to p
all nodes equidistant from each other and with a minimum of overlapping connection

Help

This menubar pulldown is activated by clicking on ’Help’ in the menubar or by using the shor
key Meta-H.

• About... Activated by selecting menu item. This should display a dialog box c
taining information about your application <NOT IMPLEMENTED>.

• Help Topics... Activated by selecting menu item. <NOT IMPLEMENTED>

• Tool Hints Activated by selecting menu item. This enables/disables tool hint he
messages, which are displayed when the mouse cursor pauses over various widget
window. Note that tool hints are disabled in toolbars if the toolbar icons are already
labeled.

• Balloon Help Activated by selecting menu item. This enables/disables balloon he
messages, which are similar to tool hints but with more text and take longer to appea
which time they replace any displayed tool hint). <NOT IMPLEMENTED>

Toolbars

Mica-supplied toolbars are similar to Mica menubars. There is a base functionality and then th
an implementation using that functionality that provides the most common features that can al
programmatically added to or removed from. The base functionality is provided by the MiToo
class. The supplied implementation is provided by the MiEditorToolBar class.

Toolbar buttons can have a number of appearances consisting of your choice of border look co
with the option to have the border appear for an tool only while it has mouse focus. Buttons c
also have labels, if desired. The background menu automatically assigned to toolbars allows
user to interactively change this at runtime.
68 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Status Bars

iEd-

d espe-

he
ny
with

num-
enus.
Toolbars can be orientated either vertically or horizontally and are dockable at any edge of a M
itorWindow (and elsewhere, see MiDockingPanel).

Status Bars

Mica supplies the MiEditorStatusBar class, a subclass of MiStatusBar, that has been designe
cially for drawing editors. It can contain a number of status barfields and oneoverlay field. Status
bar fields are areas within the status bar that display, sometimes editable, specialized data. T
overlay field is usually invisible but, when visible, covers the entire length of the status bar. A
MiPart can be a status field or overlay field. However, a number of status fields are supplied
Mica:

• MiBasicStatusField

• MiCurrentTimeStatusField

• MiMagnificationStatusField

• MiMouseXYPositionStatusField

• MiStatusBarFocusStatusField

• MiSystemResourcesStatusField

• MiWhatsSelectedStatusField

Choosers

Mica supplies a number of choosers, special widgets that allow the end-user to select one of a
ber of possible values for an attribute. Some choosers are dialog boxes and some are option m
Option menu choosers are commonly found in toolbars. The dialog choosers are:

• MiColorChooser

• MiFontChooser

The option menu choosers are:

• MiBorderLookOptionMenu

• MiColorOptionMenu

• MiFontOptionMenu

• MiFontPointSizeOptionMenu

• MiLineEndsOptionMenu
The Mica Graphics Framework (4/19/98) DRAFT 1.02 69

Chapter 14 Part Assemblies

 a

-
he

of
 com-

top of
bject

of the
t the

s used

se are
y-
 The
nd
t can
• MiLineWidthOptionMenu

Shape Attribute Dialog

This is a dialog window that displays and allows editing of the attributes of a MiPart, typically
‘shape’. This dialog is similar to attribute dialogs found in most drawing programs.

Property Sheets

Mica supplies a number of classes for the development ofproperty sheets. Property sheets are gen
erally a user interface that allows the user to set the value of a number of named attributes. T
most common property sheet is seen as two columns of text, the left column a list of names
attributes, the right column a list of (possibly editable) values. The class that implements this
mon property sheet is the MiBasicPropertyPanel class.

The MiComboPlusPropertyPanel is the same as the MiBasicPropertyPanel except that at the
the sheet is a combo box, which would typically be used to allow the user to choose which o
the property sheet is displaying properties of.

The MiListPlusPropertyPanel is the same as the MiBasicPropertyPanel except that at the left
sheet is a scrolled list, which would typically be used to allow the user to choose which objec
property sheet is displaying properties of.

The MiTablePropertyPanel is the same as the MiBasicPropertyPanel except that a MiTable i
to implement the sheet and the table allocates a column to each property and a row to each
inspected object.

Property sheets are created by assigning a list of MiPropertyWidgets to MiPropertySheet. The
then used when the property sheet isopenedas the widgets for the property panel. The MiPropert
Widget class supports initial sensitivity, dialog help and status bar help message generation.
MiPropertyWidget class saves a copy of the value of it’s property to support undo() (revert) a
hasChanged() methods. It also saves a copy of the attributes of the widget so that the widge
temporarily change it’s attributes to indicate a validation error to the user.

The Class Hierarchy

MiWidget

MiPropertyPanel
70 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

ClipBoard

sing
rd is
ent

ntains
ay the

ow.

ion
avail-
MiBasicPropertyPanel

MiComboPlusPropertyPanel

MiListPlusPropertyPanel

MiTablePropertyPanel

ClipBoard

The clipboard supports the cut, copy and pasting of MiParts. Paste operation The clipboard u
the same API as drag-and-drop. Since this API is built-in to each MiPart support for the clipboa
automatically supported. In the future the clipboard will be a transparent gateway to the resid
window system’s clipboard.

Editor Background Menu

The editor background menu is a popup usually activated using the right mouse button that co
options to cut, or copy the selected items to the clipboard, to delete the selected items, to displ
properties of the first selected item and to paste from the clipboard.

This background menu is automatically supplied to the current MiEditor in any MiEditorWind

The Class Hierarchy

MiiContextMenu

MiEditorMenu

MiEditorBackgroundMenu

MiCommand

MiCommandWidgetCommand

MiEditorBackgroundMenuCommands

End User Attributes Menu

This menu has options that allow an end-user to modify some of the attributes of an applicat
while it is running. Each MiPart has an attribute that specifies which attributes are and are not
able for modification by an end-user.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 71

Chapter 15 Customizing: Properties, Styles and Prototypes

s of
as
CHAPTER 15 Customizing:
Properties, Styles and
Prototypes

This chapter describes the support provided for customizing the look and feel of Mica.

About Customization

There are a range of approaches to customization in Mica, from the end-user typing in value
properties to customize text strings and attributes of an application to the programmer who h
written a new toolkit to replace the default look-and-feels of all widgets.
72 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Properties

igher
used
essage
e cur-

ocal

r lan-

ent.

irec-

g:

rties
Properties

Mica manages a tree of system-wide properties. The properties farther up in the tree are of h
priority than those nearer the root. The root properties have to do with the default properties
by Mica. Examples are any text (menu items, error messages, etc...), and icons (toolbars, m
dialogs, etc...). The next level up contains properties specified as the default properties by th
rently running application.

The next levels are loaded from text files. First looking in the user’s home directory then in the l
directory, each file found will have their properties loaded. The files examined are:

defaults.mica

This file typically contains text replacing the built in text strings, as desired, in perhaps anothe
guage.

properties.mica

This file typically contains properties that the end-user wants to use to customize their environm
For example:

Mi_IMAGES_HOME = /home/my_better_images

would cause Mica to get all of the built-in icons it uses from the ‘/home/my_better_images’ d
tory.

In addition the application can optionally load a property file dedicated to the application (for
example MiLife.mica).

Printing all property names and values

All property names and values can be printed by pressing Ctrl-Shift-p, if enabled, or by callin

new MiPrintGraphicsStructures().processCommand(MiPrintGraphicsStructures.PROP-
ERTIES);

Macros
Any property name can be a macro (i.e. used as part of another properties value). The prope
frequently used as macros are:
The Mica Graphics Framework (4/19/98) DRAFT 1.02 73

Chapter 15 Customizing: Properties, Styles and Prototypes

mple:

signed
r

e
 all

idual
ole.
le’s

on
dler
• Mi_HOME

• Mi_IMAGES_HOME

• Mi_CURRENT_DIRECTORY

• Mi_HOST_SYSTEM_ROOT_DIRECTORY

• Mi_VERSION

Macros can be nested to any depth. Macros are referenced as indicated by the following exa

Mi_IMAGES_HOME = ${Mi_HOME}/images/

Internationalization (text, colors, images)
As noted above, all text strings are, and should be, values of some property. When text is as
to a widget that displays text, thename of the propertyshould be used, not the actual text string. Fo
example

menu.setName(Mi_FILE_MENU_DISPLAY_NAME)

instead of

menu.setName(“&File”);

ALL text that is displayed by Mica is first checked to see if it is a property name, and if so, th
value of the property is what is actually displayed. This is also true of ALL named colors and
named images.

Styles

Styles are implementations of the MiiCustomStyle interface. A style can be assigned to a indiv
MiWidget, to a class of MiWidgets (e.g. the MiPushButton class), or to the MiWidgets as a wh
At the end of each MiWidget constructor, if the MiWidget has a style, a call is made to the sty
applyCustomStyle() method. In this method the widget can be modified as needed.

The sample implementation (MiCustomStyle) supports the adding of event handlers and acti
handlers to all widgets it is assigned to. For example this could be used to add an event han
(MiPlayEventSound) to all push buttons so that they ‘buzz’ when getting mouse focus.
74 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Prototypes

ook
opies

hod
hen
ss of
w
ew
Prototypes

MiWidgets are copied from a prototype when they are created. If it is desired to change the l
and/or feel of a class of widgets, it is often easiest to modify the prototype. The copy process c
all event handlers and action handlers that have been assigned to the prototype.

Widget Factory

Each class of MiWidget have a static create() method (e.g. MiPushbutton.create()). This met
creates a copy of the widget’s prototype and applies any assigned styles to the widget, and t
returns it. This provides a method by which the ‘type’ of widgets can be changed (to a subcla
the original widget). For example, one could do the following: MiPushButton.setPrototype(ne
MiSuperDuperPushButton()) and all successive calls to MiPushbutton.create() will return a n
instance of MiSuperDuperPushButton.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 75

Chapter 16 Debugging

 help

le and/
mize

s ver-
ed

ked
ated
CHAPTER 16 Debugging

This chapter describes debugging and how Mica supports debugging. Debugging techniques
you understand what parts of your application are working and what parts are not.

About Debugging

Mica supports debugging in a number of ways using assertions, traces that send output to a fi
or STDOUT, and internal sanity checks. The MiDebug class provides methods for you to custo
many of the debugging capabilities of Mica.

• Assertions A number of assertions are made in key methods. These assertion
ify things such as a MiPart’s bounds being valid. If an assertion fail then a non-check
exception is thrown.

• Layout validity At a number of places in the code, the hierarchy of MiParts are chec
for layout validity. If some part does not have a valid layout then a message is gener
76 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The MiDebug Class

y a
ly

g

ng
identifying the problem and the MiPart involved. This problem usually is generated b
layout modifying the it’s containers geometry. Layouts can be recalculated interactive
by using the MiIReCalcLayouts event handler.

Tracing Many operations can be individually traced if enabled by usin
the MiDebug class (seesetTraceMode()).

Event dispatch All event handler dispatching can be interactively traced by
using the MiISetDebugTraceModes event handler.

Action dispatch All action generation can be traced by using the MiDe-
bug.traceActions() method.

Structure dump The graphics container-part hierarchy can be printed by usi
the MiDebug.dump() methods or interactively using the of the
MiIPrintGraphicsStructures event handler.

The MiDebug Class

The MiDebug class has a number of public static methods which support:

• Logging to a file

• Tracing

• Printing the trace stack

• Printing a MiPart and it’s contents

• Printing dispatched actions

Special Debug Event Handlers

• MiISetDebugTraceModes

Ctrl-Shift-E Turn on/off tracing

Ctrl-Shift-D, 1 Trace translations of events into commands
The Mica Graphics Framework (4/19/98) DRAFT 1.02 77

Chapter 16 Debugging

-

wn.

w is

log. If
ith a
Ctrl-Shift-D, 2 Trace keyboard focus and enter key focus assignments

Ctrl-Shift-D, 3 Trace drag and drop activity

Ctrl-Shift-D, 4 Trace event dispatching, short-cut (accelerators) event dis-
patching, event to command translation, event handler grab
bing, and raw event input

Ctrl-Shift-D, 5 Trace interactive (end-user) selection and deselection of
MiParts

• MiIPrintGraphicsStructures

Ctrl-Shift-F Dump to STDOUT and to the dbg.mica logging file the con-
tents of the MiPart underneath the mouse cursor.

Ctrl-Shift-G Dump to STDOUT and to the dbg.mica logging file the con-
tents of the window underneath the mouse cursor.

Ctrl-Shift-P Dump to STDOUT and to the dbg.mica logging file the con-
tents of the entire properties table.

• MiIReCalcLayouts

Ctrl-Shift-L Invalidate the layouts of all MiParts in the window under the
mouse cursor, causing them all to be re-validated and redra

MiExceptionOccurredDialog

When an exception occurs in the event handling thread or the drawing thread a dialog windo
displayed with three options:Exit, Details and, if the event handling thread,Continue. If Exit is
selected the current program is exited. If Details is selected the stack trace is printed in the dia
Continue is chosen the thread is allowed to continue. Details are in all cases written to a file w
name of the form:

Error_trace_file_Thu_Apr_02_17_23_43_MST_1998
78 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

MiHierarchicalInspector
MiHierarchicalInspector

This is a dialog window that allows browsing of the structure and contents of a root window in
Mica.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 79

Chapter 17 Basic Types and Classes

s are:
CHAPTER 17 Basic Types and
Classes

This chapter describes some basic types and classes that are used throughout Mica.

About Coordinate Types

Mica uses a number of coordinate types. These types are and their corresponding Java type

MiCoord -> double

MiDistance -> double

MiDeviceCoord -> int

MiDeviceDistance -> int
80 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About MiBounds

cessing
ng pass

s.

area in
nd

ension
mod-

pace.
int

l dis-
quire

space.
ale
For speed of compilation and execution and because Java does not support typedefs a prepro
pass is used to convert these coordinate types into types that Java supports. This preprocessi
is run by the makefile and uses a ‘sed’ script on Unix and a Java executable on other platform

About MiBounds

Instances of the MiBounds class are used wherever there is a need to specify a rectangular
world space. The MiBounds class has a wealth of convenience methods to specify, inquire a
modify MiBounds instances.

About MiSize

Instances of the MiSize class are used wherever there is a need to specify a rectangular dim
in world space. The MiSize class has a wealth of convenience methods to specify, inquire and
ify MiSize instances.

About MiPoint

Instances of the MiPoint class are used wherever there is a need to specify a point in world s
The MiPoint class has a wealth of convenience methods to specify, inquire and modify MiPo
instances.

About MiVector

Instances of the MiVector class are used wherever there is a need to specify a 2 -dimensiona
tance in world space. The MiVector class has a wealth of convenience methods to specify, in
and modify MiVector instances.

About MiScale

Instances of the MiScale class are used wherever there is a need to specify a point in world
The MiScale class has a wealth of convenience methods to specify, inquire and modify MiSc
instances.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 81

Chapter 17 Basic Types and Classes

ngular
pecify,

 device
 mod-

sional
 spec-

con-
other
are a

tach-
About MiDeviceBounds

Instances of the MiDeviceBounds class are used wherever there is a need to specify a recta
area in device space. The MiDeviceBounds class has a wealth of convenience methods to s
inquire and modify MiDeviceBounds instances.

About MiDevicePoint

Instances of the MiDevicePoint class are used wherever there is a need to specify a point in
space. The MiDevicePoint class has a wealth of convenience methods to specify, inquire and
ify MiDevicePoint instances.

About MiDeviceVector

Instances of the MiDeviceVector class are used wherever there is a need to specify a 2 -dimen
distance in device space. The MiDeviceVector class has a wealth of convenience methods to
ify, inquire and modify MiDeviceVector instances.

About Attachments

MiParts can have attachments, which are other MiParts. This is in essence the parts private
tainer-part hierarchy. This is often used when one wants to temporarily associate a part with an
MiPart (for example the ‘handles’ associated with a selected shape in a drawing editor). There
number of methods of the MiPart class which support the adding, removing and inquiring of at
ments.
82 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Drag and drop

ica.
CHAPTER 18 Special Topics

This chapter describes details about topics that are necessary for a deep understanding of M

Drag and drop

To do.

Picking

To do.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 83

Chapter 18 Special Topics
Caveats

To do.
84 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About Transforms

to pro-
CHAPTER 19 Advanced Topic:
Transforms

This chapter describes transforms and how and why they are used. You can use transforms
grammatically modify the scales and translations of MiParts.

About Transforms

To do.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 85

Chapter 20 Advanced Topic: Renderers

 custom-
CHAPTER 20 Advanced Topic:
Renderers

This chapter describes renderers and how and why they are used. You can use renderers to
ize how MiParts are drawn,

About Renderers

To do.
86 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

e
ed,
CHAPTER 21 Attribute Tables

This chapter contains tables that describe the attributes associated with each MiPart.

The Tables

TABLE 1. Background Image
Description Specifies what Image, if any, to draw in the interior of the MiPart. The imag

is resized, if necessary, to the bounds of the MiPart. The image is truncat
if necessary, to the boundaries of the MiPart <NOT IMPLEMENTED JDK
1.0.2>.

MiPart Methods setBackgroundImage(Image)

Image getBackgroundImage()
The Mica Graphics Framework (4/19/98) DRAFT 1.02 87

Chapter 21 Attribute Tables

e
l-
to
Valid Values Any valid java.awt.Image, null

Default Value null

Caveats The background image will not be displayed if the background color is
equals to Mi_TRANSPARENT_COLOR. The background color is equal to
Mi_TRANSPARENT_COLOR by default.

Name Mi_BACKGROUND_IMAGE_ATT_NAME

Key Mi_BACKGROUND_IMAGE

See Also Background Tile, Fill Color

TABLE 2. Background Tile
Description Specifies what Image, if any, to draw in the interior of the MiPart. The imag

is not resized but is replicated, if necessary, row by row and column by co
umn, to fill the bounds of the MiPart. The image is truncated, if necessary,
the boundaries of the MiPart.

MiPart Methods setBackgroundTile(Image)

Image getBackgroundTile()

Valid Values Any valid java.awt.Image, null

Default Value null

Caveats

Name Mi_BACKGROUND_TILE_ATT_NAME

Key Mi_BACKGROUND_TILE

See Also Background Image

TABLE 1. Background Image
88 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

iated
t
tent
TABLE 3. Font
Description Specifies what Font to use when any text associated with the MiPart is

drawn.

MiPart Methods setFont(MiFont)

MiFont getFont()

setFontBold(boolean)

boolean isFontBold()

setFontItalic(boolean)

boolean isFontItalic()

setFontPointSize(int)

int getFontPointSize()

Valid Values Any valid MiFont

Default Value MiAttributes.defaultFont

Caveats

Name Mi_FONT_ATT_NAME

Key Mi_FONT

See Also

TABLE 4. Tool Hint Help
Description Specifies the content and appearance of the tool hint, if any, to be assoc

with the MiPart. A tool hint is the small, usually single line text message tha
appear when the user pauses the mouse cursor over the MiPart. The con
can be any text string and the appearance can be any MiAttributes.

MiPart Methods setToolHintHelp(MiiHelpInfo info)

MiiHelpInfo getToolHintHelp()

setToolHintMessage(String msg)

Valid Values Any valid MiiHelpInfo, String, null

Default Value null

Caveats
The Mica Graphics Framework (4/19/98) DRAFT 1.02 89

Chapter 21 Attribute Tables

soci-
i-
he
y

Name Mi_TOOL_HINT_HELP_ATT_NAME

Key Mi_TOOL_HINT_HELP

See Also

See Also
(Classes)

MiIDisplayToolHints

TABLE 5. Balloon Help
Description Specifies the content and appearance of the balloon help, if any, to be as

ated with the MiPart. Balloon help is the stylized callout, usually large mult
line message that appear when the user pauses the mouse cursor over t
MiPart. The content can be any text string and the appearance can be an
MiAttributes.

MiPart Methods setBalloonHelp(MiiHelpInfo info)

MiiHelpInfo getBalloonHelp()

setBalloonMessage(String msg)

Valid Values Any valid MiiHelpInfo, String, null

Default Value null

Caveats

Name Mi_BALLOON_HELP_ATT_NAME

Key Mi_BALLOON_HELP

See Also Tool Hint Help

TABLE 4. Tool Hint Help
90 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

soci-
ar
 be

soci-
e

ing
TABLE 6. Status Help
Description Specifies the content and appearance of the status help, if any, to be as

ated with the MiPart. Status help is the message displayed in the status b
when the user moves the mouse cursor over the MiPart. The content can
any text string and the appearance can be any MiAttributes.

MiPart Methods setStatusHelp(MiiHelpInfo info)

MiiHelpInfo getStatusHelp()

setStatusHelpMessage(String msg)

Valid Values Any valid MiiHelpInfo, String, null

Default Value null

Caveats

Name Mi_STATUS_HELP_ATT_NAME

Key Mi_STATUS_HELP

See Also

See Also
(Classes)

MiStatusBarFocusManager

TABLE 7. Dialog Help
Description Specifies the content and appearance of the dialog help, if any, to be as

ated with the MiPart. Dialog help is a dialog box displayed in response to th
user pressing the help key over the MiPart. The content can be any text str
and the appearance can be any MiAttributes.

MiPart Methods setDialogHelp(MiiHelpInfo info)

MiiHelpInfo getDialogHelp()

setDialogMessage(String msg)

Valid Values Any valid MiiHelpInfo, String, null

Default Value null

Caveats

Name Mi_DIALOG_HELP_ATT_NAME

Key Mi_DIALOG_HELP
The Mica Graphics Framework (4/19/98) DRAFT 1.02 91

Chapter 21 Attribute Tables
See Also

See Also
(Classes)

MiIDisplayHelpDialog

TABLE 8. Shadow Renderer
Description Specifies the renderer that will draw the shadow(s) for the MiPart.

MiPart Methods setShadowRenderer(MiiShadowRenderer)

MiiShadowRenderer getShadowRenderer()

Valid Values Any valid MiiShadowRenderer, null

Default Value null

Caveats

Name Mi_SHADOW_RENDERER_ATT_NAME

Key Mi_SHADOW_RENDERER

See Also

See Also
(Classes)

MiShadowRenderer

TABLE 9. Before Renderer
Description Specifies the renderer that will be called to drawbefore the MiPart is drawn.

MiPart Methods setBeforeRenderer(MiiPartRenderer)

MiiPartRenderer getBeforeRenderer()

Valid Values Any valid MiiPartRenderer, null

Default Value null

Caveats

Name Mi_BEFORE_RENDERER_ATT_NAME

Key Mi_BEFORE_RENDERER

See Also

See Also
(Classes)

MiPartRenderer

TABLE 7. Dialog Help
92 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables
TABLE 10. After Renderer
Description Specifies the renderer that will be called to drawafter the MiPart is drawn.

MiPart Methods setAfterRenderer(MiiPartRenderer)

MiiPartRenderer getAfterRenderer()

Valid Values Any valid MiiPartRenderer, null

Default Value null

Caveats

Name Mi_AFTER_RENDERER_ATT_NAME

Key Mi_AFTER_RENDERER

See Also

See Also
(Classes)

MiPartRenderer

TABLE 11. Line Ends Renderer
Description Specifies the renderer that will be called to draw any line endpoints (for

example arrow heads) that may be associated with the MiPart.

MiPart Methods setLineEndsRenderer(MiiLineEndsRenderer)

MiiLineEndsRenderer getLineEndsRenderer()

Valid Values Any valid MiiLineEndsRenderer, null

Default Value MiAttributes.defaultLineEndsRenderer

Caveats

Name Mi_LINE_ENDS_RENDERER_ATT_NAME

Key Mi_LINE_ENDS_RENDERER

See Also Line Start Style, Line Start Size, Line End Style, Line End Size

See Also
(Classes)

MiLineEndsRenderer
The Mica Graphics Framework (4/19/98) DRAFT 1.02 93

Chapter 21 Attribute Tables

f

TABLE 12. Connection Point Manager
Description Specifies the manager that is responsible for determining the locations o

custom connection points of the MiPart.

MiPart Methods setConnectionPointManager(MiConnectionPointManager)

MiConnectionPointManager getConnectionPointManager()

Valid Values Any valid MiConnectionPointManager, null

Default Value null

Caveats

Name Mi_CONNECTION_POINT_MANAGER_ATT_NAME

Key Mi_CONNECTION_POINT_MANAGER

See Also

See Also
(Classes)

MiConnectionPointManager

TABLE 13. Background Renderer
Description Specifies the renderer that will be called to draw the background of the

MiPart. This is used when something more complex than a solid color or
Image fill is desired as the background of the MiPart

MiPart Methods setBackgroundRenderer(MiiDeviceRenderer)

MiiDeviceRenderer getBackgroundRenderer()

Valid Values Any valid MiiDeviceRenderer, null

Default Value null

Caveats

Name Mi_BACKGROUND_RENDERER_ATT_NAME

Key Mi_BACKGROUND_RENDERER

See Also

See Also
(Classes)

MiiDeviceRenderer
94 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

bor-

 dis-
TABLE 14. Border Renderer
Description Specifies the renderer that will be called to draw any border look and/or

der hilite assigned to the MiPart.

MiPart Methods setBorderRenderer(MiiDeviceRenderer)

MiiDeviceRenderer getBorderRenderer()

Valid Values Any valid MiiDeviceRenderer, null

Default Value Miattributes.defaultBorderRenderer

Caveats

Name Mi_BORDER_RENDERER_ATT_NAME

Key Mi_BORDER_RENDERER

See Also Border Look, Border Hilite Color, Border Hilite Width, Has Border Hilite

See Also
(Classes)

MiiDeviceRenderer, MiBorderLookRenderer

TABLE 15. Visibility Animator
Description Specifies the animator that will be called to animate the appearance and

appearance of the MiPart.

MiPart Methods setVisibilityAnimator(MiPartAnimator)

MiPartAnimator setVisibilityAnimator()

Valid Values Any valid MiPartAnimator, null

Default Value null

Caveats

Name Mi_VISIBILITY_ANIMATOR_ATT_NAME

Key Mi_VISIBILITY_ANIMATOR

See Also

See Also
(Classes)

MiPartAnimator
The Mica Graphics Framework (4/19/98) DRAFT 1.02 95

Chapter 21 Attribute Tables

the
TABLE 16. Context Menu
Description Specifies the menu that will be displayed in response to the user pressing

menu popup key (usually the right mouse button) over the MiPart.

MiPart Methods setContextMenu(MiiContextMenu)

MiiContextMenu getContextMenu()

Valid Values Any valid MiiContextMenu, null

Default Value null

Caveats

Name Mi_CONTEXT_MENU_ATT_NAME

Key Mi_CONTEXT_MENU

See Also Conext Cursor

See Also
(Classes)

MiiContextMenu, MiIDisplayContextMenu, MiEditorMenu

TABLE 17. Color
Description Specifies the color that will be used to draw the MiPart. Also calledfore-

ground color by some people.

MiPart Methods setColor(Color)

setColor(String)

Color getColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR, any valid color
name (see MiColorManager), RGB specified by prefix “0x” or “#”

Default Value MiColorManager.black

Caveats

Name Mi_COLOR_ATT_NAME

Key Mi_COLOR

See Also Background Color

See Also
(Classes)

MiColorManager, java.awt.Color
96 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables
TABLE 18. Background Color
Description Specifies the background color that will be used to draw the MiPart. Also

calledfill color by some people.

MiPart Methods setBackgroundColor(Color)

setBackgroundColor(String)

Color getBackgroundColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR, any valid color
name (see MiColorManager), RGB specified by prefix “0x” or “#”

Default Value MiiTypes.Mi_TRANSPARENT_COLOR

Caveats

Name Mi_BACKGROUND_COLOR_ATT_NAME

Key Mi_BACKGROUND_COLOR

See Also Color

See Also
(Classes)

MiColorManager, java.awt.Color

TABLE 19. White Color
Description Specifies the white (brightest) color that will be used to draw the MiPart.

This is typically used when drawing a beveled border for the MiPart.

MiPart Methods setWhiteColor(Color)

Color getWhiteColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR

Default Value MiColorManager.white

Caveats

Name Mi_WHITE_COLOR_ATT_NAME

Key Mi_WHITE_COLOR

See Also Light Color

See Also
(Classes)

MiColorManager
The Mica Graphics Framework (4/19/98) DRAFT 1.02 97

Chapter 21 Attribute Tables

rt.

rt.
TABLE 20. Light Color
Description Specifies the light (second brightest) color that will be used to draw the

MiPart. This is typically used when drawing a beveled border for the MiPa

MiPart Methods setLightColor(Color)

Color getLightColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR

Default Value MiColorManager.lightGray2

Caveats

Name Mi_LIGHT_COLOR_ATT_NAME

Key Mi_LIGHT_COLOR

See Also White Color

See Also
(Classes)

MiColorManager

TABLE 21. Dark Color
Description Specifies the dark (third brightest) color that will be used to draw the MiPa

This is typically used when drawing a beveled border for the MiPart.

MiPart Methods setDarkColor(Color)

Color getDarkColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR

Default Value MiColorManager.gray

Caveats

Name Mi_DARK_COLOR_ATT_NAME

Key Mi_DARK_COLOR

See Also Black Color

See Also
(Classes)

MiColorManager
98 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

pi-
TABLE 22. Black Color
Description Specifies the darkest color that will be used to draw the MiPart. This is ty

cally used when drawing a beveled border for the MiPart.

MiPart Methods setBlackColor(Color)

Color getBlackColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR

Default Value MiColorManager.darkGray

Caveats

Name Mi_BLACK_COLOR_ATT_NAME

Key Mi_BLACK_COLOR

See Also Dark Color

See Also
(Classes)

MiColorManager

TABLE 23. Border Hilite Color
Description Specifies the color that will be used to draw the hilite border, if any, of the

MiPart.

MiPart Methods setBorderHiliteColor(Color)

Color getBorderHiliteColor()

Valid Values Any valid Color, MiiTypes.Mi_TRANSPARENT_COLOR

Default Value MiColorManager.black

Caveats

Name Mi_BORDER_HILITE_COLOR_ATT_NAME

Key Mi_BORDER_HILITE_COLOR

See Also Has Border Hilite

See Also
(Classes)

MiColorManager
The Mica Graphics Framework (4/19/98) DRAFT 1.02 99

Chapter 21 Attribute Tables

n-
TABLE 24. Border Look
Description Specifies the look of the border drawn around subclasses of MiVisibleCo

tainer (i.e. all MiWidgets) and the look of the lines drawn in shapes (i.e.
lines, ovals and rectangle, etc.).

MiPart Methods setBorderLook(int)

int getBorderLook()

Valid Values Mi_FLAT_BORDER_LOOK

Mi_NO_BORDER_LOOK

Mi_RAISED_BORDER_LOOK

Mi_INDENTED_BORDER_LOOK

Mi_GROOVE_BORDER_LOOK

Mi_RIDGE_BORDER_LOOK

Mi_OUTLINED_RAISED_BORDER_LOOK

Mi_OUTLINED_INDENTED_BORDER_LOOK

Mi_INLINED_RAISED_BORDER_LOOK

Mi_INLINED_INDENTED_BORDER_LOOK

Mi_SQUARE_RAISED_BORDER_LOOK

Default Value Mi_FLAT_BORDER_LOOK

Caveats

Name Mi_BORDER_LOOK_ATT_NAME

Key Mi_BORDER_LOOK

See Also White, Light, Dark and Black Color

TABLE 25. Line Style
Description Specifies how any lines associated with the MiPart will be drawn.

MiPart Methods setLineStyle(int)

int getLineStyle()
100 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

n

Valid Values Mi_SOLID_LINE_STYLE

Mi_DASHED_LINE_STYLE <NOT IMPLEMENTED>

Mi_DOUBLE_DASHED_LINE_STYLE <NOT IMPLEMENTED>

Default Value Mi_SOLID_LINE_STYLE

Caveats

Name Mi_LINE_STYLE_ATT_NAME

Key Mi_LINE_STYLE

See Also

TABLE 26. Line Start Style
Description Specifies how the start of any line associated with the MiPart will be draw

(for example anarrow tail)

MiPart Methods setLineStartStyle(int)

int getLineStartStyle()

TABLE 25. Line Style
The Mica Graphics Framework (4/19/98) DRAFT 1.02 101

Chapter 21 Attribute Tables
Valid Values Mi_NONE

Mi_FILLED_TRIANGLE_LINE_END_STYLE

Mi_THIN_ARROW_LINE_END_STYLE

Mi_THICK_ARROW_LINE_END_STYLE

Mi_FILLED_CIRCLE_LINE_END_STYLE

Mi_FILLED_SQUARE_LINE_END_STYLE

Mi_TRIANGLE_VIA_LINE_END_STYLE

Mi_FILLED_TRIANGLE_VIA_LINE_END_STYLE

Mi_CIRCLE_VIA_LINE_END_STYLE

Mi_FILLED_CIRCLE_VIA_LINE_END_STYLE

Mi_SQUARE_VIA_LINE_END_STYLE

Mi_FILLED_SQUARE_VIA_LINE_END_STYLE

Mi_TRIANGLE_LINE_END_STYLE

Mi_CIRCLE_LINE_END_STYLE

Mi_SQUARE_LINE_END_STYLE

Mi_DIAMOND_LINE_END_STYLE

Mi_FILLED_DIAMOND_LINE_END_STYLE

Mi_3FEATHER_LINE_END_STYLE

Mi_2FEATHER_LINE_END_STYLE

Default Value Mi_NONE

Caveats

Name Mi_LINE_START_STYLE_ATT_NAME

Key Mi_LINE_START_STYLE

See Also Line Start Size, Line End Style, Line End Size, Line Ends Renderer

See Also
(Classes)

MiLineEndsRenderer

TABLE 26. Line Start Style
102 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

n

TABLE 27. Line End Style
Description Specifies how the end of any line associated with the MiPart will be draw

(for example anarrow head)

MiPart Methods setLineEndStyle(int)

int getLineEndStyle()

Valid Values Mi_NONE

Mi_FILLED_TRIANGLE_LINE_END_STYLE

Mi_THIN_ARROW_LINE_END_STYLE

Mi_THICK_ARROW_LINE_END_STYLE

Mi_FILLED_CIRCLE_LINE_END_STYLE

Mi_FILLED_SQUARE_LINE_END_STYLE

Mi_TRIANGLE_VIA_LINE_END_STYLE

Mi_FILLED_TRIANGLE_VIA_LINE_END_STYLE

Mi_CIRCLE_VIA_LINE_END_STYLE

Mi_FILLED_CIRCLE_VIA_LINE_END_STYLE

Mi_SQUARE_VIA_LINE_END_STYLE

Mi_FILLED_SQUARE_VIA_LINE_END_STYLE

Mi_TRIANGLE_LINE_END_STYLE

Mi_CIRCLE_LINE_END_STYLE

Mi_SQUARE_LINE_END_STYLE

Mi_DIAMOND_LINE_END_STYLE

Mi_FILLED_DIAMOND_LINE_END_STYLE

Mi_3FEATHER_LINE_END_STYLE

Mi_2FEATHER_LINE_END_STYLE

Default Value Mi_NONE

Caveats

Name Mi_LINE_END_STYLE_ATT_NAME

Key Mi_LINE_END_STYLE
The Mica Graphics Framework (4/19/98) DRAFT 1.02 103

Chapter 21 Attribute Tables

n

the
See Also Line End Size, Line Start Style, Line Start Size, Line Ends Renderer

See Also
(Classes)

MiLineEndsRenderer

TABLE 28. Write Mode
Description Specifies how colors of the MiPart will be mixed with the colors already o

the output device when the MiPart is drawn.

MiPart Methods setWriteMode(int)

int getWriteMode()

Valid Values Mi_COPY_WRITEMODE (replace the colors of the pixels in the output
buffer with the colors of the pixels of the MiPart)

Mi_XOR_WRITEMODE (xor the colors of the pixels in the output buffer
with the colors of the pixels of the MiPart)

Default Value Mi_COPY_WRITEMODE

Caveats

Name Mi_WRITE_MODE_ATT_NAME

Key Mi_WRITE_MODE

See Also

TABLE 29. Context Cursor
Description Specifies how the shape of the mouse cursor will appear while it is over

MiPart.

MiPart Methods setContextCursor(int)

int getContextCusror()

TABLE 27. Line End Style
104 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables
Valid Values MiNONE <NOT IMPLEMENTED>

Mi_DEFAULT_CURSOR

Mi_CROSSHAIR_CURSOR

Mi_TEXT_CURSOR

Mi_WAIT_CURSOR

Mi_SW_RESIZE_CURSOR

Mi_SE_RESIZE_CURSOR

Mi_NW_RESIZE_CURSOR

Mi_NE_RESIZE_CURSOR

Mi_N_RESIZE_CURSOR

Mi_S_RESIZE_CURSOR

Mi_W_RESIZE_CURSOR

Mi_E_RESIZE_CURSOR

Mi_HAND_CURSOR

Mi_MOVE_CURSOR

Default Value Mi_DEFAULT_CURSOR

Caveats

Name Mi_CONTEXT_CURSOR_ATT_NAME

Key Mi_CONTEXT_CURSOR

See Also

See Also
(Classes)

java.awt.Frame

TABLE 29. Context Cursor
The Mica Graphics Framework (4/19/98) DRAFT 1.02 105

Chapter 21 Attribute Tables

by

d

TABLE 30. Minimum Width
Description Specifies the minimum width of the MiPart.

MiPart Methods setMinimumWidth(MiDistance)

MiDistance getMinimumWidth()

Valid Values >= 0

Default Value 0

Caveats The minimum width is not enforeced by the MiPart. It should be enforced
the manipulators of the MiPart.

Name Mi_MINIMUM_WIDTH_ATT_NAME

Key Mi_MINIMUM_WIDTH

See Also Minimum Height, Maximum Width

TABLE 31. Minimum Height
Description Specifies the minimum height of the MiPart.

MiPart Methods setMinimumHeight(MiDistance)

MiDistance getMinimumHeight()

Valid Values >= 0

Default Value 0

Caveats The minimum height is not enforeced by the MiPart. It should be enforce
by the manipulators of the MiPart.

Name Mi_MINIMUM_HEIGHT_ATT_NAME

Key Mi_MINIMUM_HEIGHT

See Also Minimum Width, Maximum Height
106 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

by

ed
TABLE 32. Maximum Width
Description Specifies the maximum width of the MiPart.

MiPart Methods setMaximumWidth(MiDistance)

MiDistance getMaximumWidth()

Valid Values >= 0

Default Value MAX_DISTANCE_VALUE

Caveats The maximum width is not enforeced by the MiPart. It should be enforced
the manipulators of the MiPart.

Name Mi_MAXIMUM_WIDTH_ATT_NAME

Key Mi_MAXIMUM_WIDTH

See Also Maximum Height, Minimum Width

TABLE 33. Maximum Height
Description Specifies the maximum height of the MiPart.

MiPart Methods setMaximumHeight(MiDistance)

MiDistance getMaximumHeight()

Valid Values >= 0

Default Value MAX_DISTANCE_VALUE

Caveats The maximum height is not enforeced by the MiPart. It should be enforc
by the manipulators of the MiPart.

Name Mi_MAXIMUM_HEIGHT_ATT_NAME

Key Mi_MAXIMUM_HEIGHT

See Also Minimum Height, Maximum Width
The Mica Graphics Framework (4/19/98) DRAFT 1.02 107

Chapter 21 Attribute Tables
TABLE 34. Border Hilite Width
Description Specifies the width of the hilite border, if any, of the MiPart.

MiPart Methods setBorderHiliteWidth(MiDistance)

MiDistance getBorderHiliteWidth()

Valid Values >= 0

Default Value 2.0

Caveats

Name Mi_BORDER_HILITE_WIDTH_ATT_NAME

Key Mi_BORDER_HILITE_WIDTH

See Also Has Border Hilite, Border Hilite Color

TABLE 35. Line Width
Description Specifies the width of any lines associated with the MiPart.

MiPart Methods setLineWidth(MiDistance)

MiDistance getLineWidth()

Valid Values >= 0

Default Value 0

Caveats

Name Mi_LINE_WIDTH_ATT_NAME

Key Mi_LINE_WIDTH

See Also Line Style, Color

TABLE 36. Line Start Size
Description Specifies the size of any line start style assigned to the MiPart.

MiPart Methods setLineStartSize(MiDistance)

MiDistance getLineStartSize()
108 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables
Valid Values >= 0

Default Value 10.0

Caveats

Name Mi_LINE_START_SIZE_ATT_NAME

Key Mi_LINE_START_SIZE

See Also Line Start Style, Line Ends Size Fn of Line Width

See Also
(Classes)

MiLineEndsRenderer

TABLE 37. Line End Size
Description Specifies the size of any line end style assigned to the MiPart.

MiPart Methods setLineEndSize(MiDistance)

MiDistance getLineEndSize()

Valid Values >= 0

Default Value 10.0

Caveats

Name Mi_LINE_END_SIZE_ATT_NAME

Key Mi_LINE_END_SIZE

See Also Line End Style, Line Ends Size Fn of Line Width

See Also
(Classes)

MiLineEndsRenderer

TABLE 38. Deletable
Description Specifies whether the MiPart can be deleted.

MiPart Methods setDeletable(boolean)

boolean isDeletable()

TABLE 36. Line Start Size
The Mica Graphics Framework (4/19/98) DRAFT 1.02 109

Chapter 21 Attribute Tables

e

e

e

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_DELETABLE_ATT_NAME

Key Mi_DELETABLE

See Also

TABLE 39. Movable
Description Specifies whether the MiPart can be moved.

MiPart Methods setMovable(boolean)

boolean isMovable()

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_MOVABLE_ATT_NAME

Key Mi_MOVABLE

See Also

TABLE 40. Copyable
Description Specifies whether the MiPart can be copied.

MiPart Methods setCopyable(boolean)

boolean isCopyable()

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

TABLE 38. Deletable
110 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

e

e

Name Mi_COPYABLE_ATT_NAME

Key Mi_COPYABLE

See Also

TABLE 41. Selectable
Description Specifies whether the MiPart can be selected.

MiPart Methods setSelectable(boolean)

boolean isSelectable()

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_SELECTABLE_ATT_NAME

Key Mi_SELECTABLE

See Also

TABLE 42. Fixed Width
Description Specifies whether the MiPart has a contant horizontal size.

MiPart Methods setFixedWidth(boolean)

boolean hasFixedWidth()

Valid Values true, false

Default Value false

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_FIXED_WIDTH_ATT_NAME

Key Mi_FIXED_WIDTH

See Also Fixed Height, Minimum Width, Maximum Width

TABLE 40. Copyable
The Mica Graphics Framework (4/19/98) DRAFT 1.02 111

Chapter 21 Attribute Tables

e

ze

e

TABLE 43. Fixed Height
Description Specifies whether the MiPart has a contant vertical size.

MiPart Methods setFixedHeight(boolean)

boolean hasFixedHeight()

Valid Values true, false

Default Value false

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_FIXED_HEIGHT_ATT_NAME

Key Mi_FIXED_HEIGHT

See Also Fixed Width, Minimum Height, Maximum Height

TABLE 44. Fixed Aspect Ratio
Description Specifies whether the MiPart has a constant horizontal size to vertical si

ratio.

MiPart Methods setFixedAspectRatio(boolean)

boolean hasFixedAspectRatio()

Valid Values true, false

Default Value false

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_FIXED_ASPECT_RATIO_ATT_NAME

Key Mi_FIXED_ASPECT_RATIO

See Also
112 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

ge
TABLE 45. Attribute Lock Mask
Description Specifies what attributes of the MiPart cannot be changed.

MiPart Methods setAttributeLockMask(int)

int getAttributeLockMask()

Valid Values Mi_NONE

or any combination of:

Mi_COLOR_ATTRIBUTE_MASK_BIT

Mi_BACKGROUND_COLOR_ATTRIBUTE_MASK_BIT

Mi_LINE_WIDTH_ATTRIBUTE_MASK_BIT

Mi_WRITE_MODE_ATTRIBUTE_MASK_BIT

Mi_FONT_ATTRIBUTE_MASK_BIT

Default Value Mi_NONE

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_ATTRIBUTE_LOCK_MASK_ATT_NAME

Key Mi_ATTRIBUTE_LOCK_MASK

See Also

TABLE 46. Attribute Public Mask
Description Specifies what attributes of the MiPart can be changed by theend user. This

attribute is to be used by any end user menus that allow the user to chan
things like color and fonts, interactively (see MiEndUserAttsPopupMenu).

MiPart Methods setAttributePublicMask(int)

int getAttributePublicMask()
The Mica Graphics Framework (4/19/98) DRAFT 1.02 113

Chapter 21 Attribute Tables

e

Valid Values Mi_NONE

or any combination of:

Mi_COLOR_ATTRIBUTE_MASK_BIT

Mi_BACKGROUND_COLOR_ATTRIBUTE_MASK_BIT

Mi_LINE_WIDTH_ATTRIBUTE_MASK_BIT

Mi_WRITE_MODE_ATTRIBUTE_MASK_BIT

Mi_FONT_ATTRIBUTE_MASK_BIT

Default Value Mi_NONE

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_ATTRIBUTE_LOCK_MASK_ATT_NAME

Key Mi_ATTRIBUTE_LOCK_MASK

See Also Attribute Lock Mask

See Also
(Classes)

MiEndUserAttsPopupMenu

TABLE 47. Pickable
Description Specifies whether the MiPart can be picked.

MiPart Methods setPickable(boolean)

boolean isPickable()

Valid Values true, false

Default Value true

Caveats

Name Mi_PICKABLE_ATT_NAME

Key Mi_PICKABLE

See Also

TABLE 46. Attribute Public Mask
114 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

ent

e

e

TABLE 48. Ungroupable
Description Specifies whether the MiPart can be ungrouped (separated into constitu

MiParts).

MiPart Methods setUngroupable(boolean)

boolean isUngroupable()

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_UNGROUPABLE_ATT_NAME

Key Mi_UNGROUPABLE

See Also

TABLE 49. Connectable
Description Specifies whether the MiPart can be connected to.

MiPart Methods setConnectable(boolean)

boolean isConnectable()

Valid Values true, false

Default Value true

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_CONNECTABLE_ATT_NAME

Key Mi_CONNECTABLE

See Also
The Mica Graphics Framework (4/19/98) DRAFT 1.02 115

Chapter 21 Attribute Tables

e

ns.
TABLE 50. Hidden
Description Specifies whether the MiPart is hidden (e.g. not visible but still having

bounds and taking up space on the output device).

MiPart Methods setHidden(boolean)

boolean isHidden()

Valid Values true, false

Default Value false

Caveats This attribute is not enforeced by the MiPart. It should be enforced by th
manipulators of the MiPart.

Name Mi_HIDDEN_ATT_NAME

Key Mi_HIDDEN

See Also

TABLE 51. Drag and Drop Source
Description Specifies whether the MiPart is a data source for drag and drop operatio

MiPart Methods setIsDragAndDropSource(boolean)

boolean isDragAndDropSource()

Valid Values true, false

Default Value false

Caveats

Name Mi_DRAG_AND_DROP_SOURCE_ATT_NAME

Key Mi_DRAG_AND_DROP_SOURCE

See Also Drag and Drop Target

See Also
(Classes)

MiDragAndDropManager, MiDragAndDropBehavior, MiiDragAndDropBe-
havior
116 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables

s.
TABLE 52. Drag and Drop Target
Description Specifies whether the MiPart is a data target for drag and drop operation

MiPart Methods setIsDragAndDropTarget(boolean)

boolean isDragAndDropTarget()

Valid Values true, false

Default Value false

Caveats

Name Mi_DRAG_AND_DROP_TARGET_ATT_NAME

Key Mi_DRAG_AND_DROP_TARGET

See Also Drag And Drop Source

See Also
(Classes)

MiDragAndDropManager, MiDragAndDropBehavior, MiiDragAndDropBe-
havior

TABLE 53. Accepting Mouse Focus
Description Specifies whether the MiPart accepts mouse focus.

MiPart Methods setAcceptingMouseFocus(boolean)

boolean isAcceptingMouseFocus()

Valid Values true, false

Default Value false

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_ACCEPTS_MOUSE_FOCUS_ATT_NAME

Key Mi_ACCEPTS_MOUSE_FOCUS

See Also
The Mica Graphics Framework (4/19/98) DRAFT 1.02 117

Chapter 21 Attribute Tables
TABLE 54. Accepting Keyboard Focus
Description Specifies whether the MiPart accepts keyboard focus.

MiPart Methods setAcceptingKeyboardFocus(boolean)

boolean isAcceptingKeyboardFocus()

Valid Values true, false

Default Value false

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_ACCEPTS_KEYBOARD_FOCUS_ATT_NAME

Key Mi_ACCEPTS_KEYBOARD_FOCUS

See Also

TABLE 55. Accepting Enter Key Focus
Description Specifies whether the MiPart accepts enter key focus.

MiPart Methods setAcceptingEnterKeyFocus(boolean)

boolean isAcceptingEnterKeyFocus()

Valid Values true, false

Default Value false

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_ACCEPTS_ENTER_KEY_FOCUS_ATT_NAME

Key Mi_ACCEPTS_ENTER_KEY_FOCUS

See Also
118 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

The Tables
TABLE 56. Accepting Tab Keys
Description Specifies whether the MiPart accepts tab keys.

MiPart Methods setAcceptingTabKeys(boolean)

boolean isAcceptingTabKeys()

Valid Values true, false

Default Value true

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_ACCEPTS_TAB_KEYS_ATT_NAME

Key Mi_ACCEPTS_TAB_KEYS

See Also

TABLE 57. Has Border Hilite
Description Specifies whether the MiPart has a hilite border.

MiPart Methods setHasBorderHilite(boolean)

boolean getHasBorderHilite()

Valid Values true, false

Default Value false

Caveats This attribute is not enforced by the MiPart. It should be enforced by the
manipulators of the MiPart.

Name Mi_HAS_BORDER_HILITE_ATT_NAME

Key Mi_HAS_BORDER_HILITE

See Also
The Mica Graphics Framework (4/19/98) DRAFT 1.02 119

Chapter 21 Attribute Tables

y

TABLE 58. Line Ends Size a Function of Line Width
Description Specifies whether the any Line Starts or Ends of the MiPart automaticall

resize is response to changes in the line width attribute of the MiPart.

MiPart Methods setLineEndsSizeFnOfLineWidth(boolean)

boolean getLineEndsSizeFnOfLineWidth()

Valid Values true, false

Default Value true

Caveats

Name Mi_LINE_ENDS_SIZE_FN_OF_LINE_WIDTH_ATT_NAME

Key Mi_LINE_ENDS_SIZE_FN_OF_LINE_WIDTH

See Also MiLineEndsRenderer class
120 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

About Colors

tter

g
" or
me
CHAPTER 22 Colors

This chapter describes the named colors supported by Mica.

About Colors

At this time Mica uses java.AWT.Color as the color in all APIs. However this may change to be
support partial transparency.

Color Names

Mica supports a limited set ofnamed colors. Other colors can also be specified using a text strin
by using the hexadecimal format to indicate the RGB value of the color (for example "0xff0000
"#ff0000"). The 100% transparent (i.e. completely invisible) color can be specified with the na
The Mica Graphics Framework (4/19/98) DRAFT 1.02 121

Chapter 22 Colors
“transparent” (MiiTypes.Mi_TRANSPARENT_COLOR_NAME) and has a color equal to null
(MiiTypes.Mi_TRANSPARENT_COLOR).

TABLE 59. Color Names

Name RGB (Red, green, Blue) Browser
Safe

Found In
awt.Color

Black 0, 0, 0 Y Y

darkGray 51, 51, 51 Y N

Gray 102, 102, 102 Y N

lightGray 153, 153, 153 Y N

veryLightGray 192, 192, 192 N Y

veryVeryLightGray 204, 204, 204 Y N

veryDarkWhite 219, 219, 219 N N

darkWhite 238, 238, 238 Y N

white 255, 255, 255 Y Y

veryDarkGreen 0, 102, 0 Y N

darkGreen 0, 204, 0 Y N

green 0, 255, 0 Y Y

darkYellow 204, 204, 0 Y N

yellow 255, 255, 0 Y Y

darkBlue 0, 0, 204 Y N

blue 0, 0, 255 Y Y

lightBlue 0, 153, 255 Y N

veryLightBlue 102, 153, 255 Y N

veryVeryLightBlue 153, 204, 255 Y N

darkCyan 0, 204, 255 Y N

cyan 0, 255, 255 Y Y

lightCyan 204, 255, 255 Y N

purple 153, 0, 204 Y N

lightPurple 153, 102, 204 Y N
122 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

Color Names
violet 201, 102, 255 Y N

magenta 255, 0, 255 Y Y

pink 255, 153, 255 Y N

lightPink 255, 204, 255 Y N

veryDarkBrown 204, 51, 0 Y N

darkBrown 204, 102, 53 Y N

brown 204, 153, 51 Y N

lightBrown 255, 204, 153 Y N

red 255, 0, 0 Y Y

orange 255, 102, 51 Y N

TABLE 59. Color Names
The Mica Graphics Framework (4/19/98) DRAFT 1.02 123

Chapter 22 Colors
124 DRAFT 1.02 The Mica Graphics Framework (4/19/98)

	CHAPTER 1 Introduction
	About Mica
	Acknowledgements
	Naming Methodology
	Nomenclature

	CHAPTER 2 Overview
	Design Goals
	Features
	Architecture - The Layered Approach
	The AWT Layer
	The Mica-AWT Interface Layer
	The Mica Construction Layer
	The Mica Widgets Layer
	The Mica Parts Layer
	The Mica Editors Layer

	Event and Action Handling

	CHAPTER 3 Parts
	About MiParts
	The top levels of the MiPart Class Hierarchy
	MiPart Functionality Overview

	CHAPTER 4 Editors
	About MiEditors
	About MiViewports
	About Layers
	About MiiEditorViewportSizeLayout
	About MiiSelectionManager

	CHAPTER 5 Windows
	About MiWindows
	The top levels of the Window Class Hierarchy
	About MiNativeWindows
	About MiNativeDialogs
	About MiNativeMessageDialogs
	About MiInternalWindows
	About MiDialogs
	About MiMessageDialogs
	About MiDragAndDropManager
	About MiKeyboardFocusManager
	About MiStatusBarFocusManager
	About MiiKeyFocusTraversalGroup

	CHAPTER 6 Shapes
	About Shapes
	Hierarchy
	Full featured shapes
	Lightweight shapes
	Very lightweight shapes
	Rectangular Shapes
	Multi-Point Shapes

	CHAPTER 7 Containers
	About MiContainers
	The Visible Container

	CHAPTER 8 Connections
	About MiConnections
	About Connection Points
	About MiConnectionPointManagers

	CHAPTER 9 Widgets
	About MiWidgets
	Widget Hierarchy
	Standard Widgets
	MiLabels
	MiButtons

	MiTable
	MiTreeList

	CHAPTER 10 Attributes
	About MiAttributes
	About Attribute Management
	The Attribute Methods
	MiPushAttributes and MiPopAttributes

	CHAPTER 11 Layouts
	About MiiLayouts
	Shape Layouts
	Graph Layouts
	Special Layouts
	Manipulating Layouts

	CHAPTER 12 Events
	About MiEvents
	About MiiEventHandlers
	Using MiiEventHandlers
	Mica-supplied MiiEventHandlers

	CHAPTER 13 Actions
	About MiiActions
	About MiiActionHandlers
	Using MiiActions and MiiActionHandlers
	Examples of Using MiiActions and MiiActionHandlers
	Methods to Assign Actions/Handlers to MiParts
	Action Types
	About MiActionManager

	CHAPTER 14 Part Assemblies
	MiEditorWindow
	MiiCommandManager

	Menubars
	Toolbars
	Status Bars
	Choosers
	Shape Attribute Dialog
	Property Sheets
	ClipBoard
	Editor Background Menu
	End User Attributes Menu

	CHAPTER 15 Customizing: Properties, Styles and Prototypes
	About Customization
	Properties
	Printing all property names and values
	Macros
	Internationalization (text, colors, images)

	Styles
	Prototypes
	Widget Factory

	CHAPTER 16 Debugging
	About Debugging
	The MiDebug Class
	Special Debug Event Handlers
	MiExceptionOccurredDialog
	MiHierarchicalInspector

	CHAPTER 17 Basic Types and Classes
	About Coordinate Types
	About MiBounds
	About MiSize
	About MiPoint
	About MiVector
	About MiScale
	About MiDeviceBounds
	About MiDevicePoint
	About MiDeviceVector
	About Attachments

	CHAPTER 18 Special Topics
	Drag and drop
	Picking
	Caveats

	CHAPTER 19 Advanced Topic: Transforms
	About Transforms

	CHAPTER 20 Advanced Topic: Renderers
	About Renderers

	CHAPTER 21 Attribute Tables
	The Tables

	CHAPTER 22 Colors
	About Colors
	Color Names

