
 2D
Mica Overview

This paper provides an introduction to Mica, a graphics library that can be used to manage all aspects of
graphics applications, including user-interfaces, diagrams, graphs and animations.

Mica is named after the finely-layered, flexible, partially transparent mineral that is found in nature.

This white paper refers to Mica Version 0.90 (Alpha)
e
er
ling,

a is

hin
ny

 the

ified,
 lay-

ase
hat
y

About Mica

Mica is an object-oriented graphics framework specifically crafted to support th
implementation and inter-mingling of graphing editors, drawing editors, and us
interfaces. To this end Mica has extensive support for display lists, event hand
action dispatching, coordinate transforms, and connectivity.

Mica is not a desktop, though desktops can be implemented on top of Mica. Mic
not a user interface toolkit, though one is included with Mica. Mica is not just a
object-oriented graphics toolkit, though there are primitive graphics objects wit
Mica: these graphics primitives have a wealth of functionality and there are ma
layers of functionality on top of them. Mica is not drawing editor, though one is
included with it as a sample application. Mica is not an application framework,
though Mica can be the graphics component of an application framework (see
forthcoming Cadabra white paper).

Mica is designed and written by programmers to support programmers. Whenever a
part is moved or added or removed, an attribute is changed, the viewport mod
a button label changed, etc., Mica automatically updates any internal data, any
out, and the current view, if necessary. All parts derive from a richly featured b
class in order that the programmer can easily add a bit more functionality to w
may be historically considered a ‘simple’ part. Any part can be replaced by an
The Mica Graphics Framework (4/19/98) 1



a plot
hment

ding

urce
; those
 pro-
mploy-

y arise.

ica

dgets
g both
, and
other part (for example a labeled icon in a node-arc graph can be replaced by a scrolled list or
or an embedded internal window). Similarly, a part can be assigned to another part as an attac
without having to alter the container-part hierarchy.

Acknowledgements

We want to thank Sun Microsystems for making such a fun programming language and for lea
the battle for the rest of us in the portability wars.

We would also like to acknowledge those who have written and distributed graphics toolkit so
code before us: we hope you enjoy cruising this code as much as we enjoyed cruising yours
who have published papers, manuals and books about graphics toolkits: we all rely on you to
pogate the art to the rest of us; and to those whose work and ideas are held hostage by their e
ers: we cast Mica into the winds as yet another blow against the empire.

This chapter presents an overview of Mica and how it works.

Design Goals

Mica is unashamedly designed for the programmer. As such the top priorities are:

1. Maximize the ease of use of the current features

2. Maximize the number (while maintaining the orthogonality) of features

3. Maximize the ease of adding features

Performance and memory size problems are tackled on a case-by-case basis if and when the

Features

Written using Java (no native methods) and only a minimal amount of the AWT graphics API, M
is extremely portable.

Many graphics objects are provided including shapes (line, rectangle, text,...), connections, wi
(push buttons, tables, tree lists, combo boxes,...), windows, dialogs and message boxes (usin
native AWT frames and internal Mica frames), editors, choosers, pre-built menubars, toolbars
graphics editors.
2 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



eated
ition
bjects

ard

ed to
input.
ze the
 move,
 be

 them.
f the
at are

rd and
nd com-

les’)

event
des
asks

hat the

mber
on-
heads
Subclassing from a single highly functional base class, all graphics objects therefore can be tr
the same (reducing cognitive overhead), can be modified using their API or by using compos
(preventing the need for of a lot of subclassing), and combined and used by other graphics o
without regard to their actual type.

The availability of the source code, for both the library and applications, makes it straight forw
to mimic, copy-and-modify and debug.

A large number of behavioral objects, called event handlers, are provided which can be assign
any graphics object. These are used, for example, by all Mica widgets to respond to the user’s
Each event handler has an event->functionality translation table which can be used to customi
precise behavior of any graphics object. The event handlers provided support, zoom, select,
full-screen cursor, create connection, create text and much more. Special event handlers can
used to monitor and/or grab control of the event stream.

Events are Mica objects that contain useful information about the input event that generated
All geometric information in an event is automatically transformed to the local space of each o
event handlers that examine the event. The event also contains the list of graphics objects th
lie underneath the point where the event occurred.

Actions (generated by graphics objects) are differentiated from events (generated the keyboa
mouse). Actions have four phases: request, cancel (when the request was vetoed), execute a
mit.

World coordinates are used for all graphics objects for accuracy (using real numbers i.e. ‘doub
and display flexibility (magnification, birds-eye and fish-eye views, etc.). All transformations,
which can be assigned to any container, are automatically used by Mica.

Any and all modifications made to any graphics object (whether to it’s appearance, geometry,
handling or action handling) are automatically detected and accounted for by Mica. This inclu
but is not limited to updating layouts near the graphics object, updating the event and action m
of the graphics object and/or it’s containers, and redrawing the graphics object.

Graphics objects are moved, resized, connected, reconnected, and animated in real-time so t
end-user does not get confused by ‘disappearing graphics’.

Connections are first class graphics objects and extensive support forhaving connections is
included in all graphics objects. Connections connect to graphics objects at common or any nu
of custom ‘connection points’. Connections are automatically moved and updated by Mica. C
nections are usually displayed as lines and can therefore have use of the dozen or so arrow 
and tails supplied.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 3



r in the
n-
an be

ing is

inside
 inside
object
on-

rings
files:
-

les of
ndlers

 files).

ect
effects

essible
ng

 be a
. The
ar (a
x). The
dow.

ed with
after,
Attachments are graphics objects that are assigned to other graphics objects but do not appea
part-container hierarchy of a window. Attachments make it extremely easy to add ‘resizing ha
dles’ to a selected graphics object or to add a textfield widget to a connection. Attachments c
assigned to a variety of positions with respect to their ‘host’ graphics object and this position
automatically maintained by Mica.

Any graphics object can be assigned a layout. Some layouts specify the positions of the parts
a graphics object (i.e. a row layout), some specify the positions and connections of the parts
a graphics object (i.e. a star graph layout), and some specify a constraint between a graphics
and another (i.e. x is to the left of y). All widgets use layouts to specify the positions of their c
stituent shapes.

Full support for end-user and programmatic specification of properties is provided. All text st
and icons displayed by Mica and it’s applications can be changed using the plain ASCII text 
defaults.mica andproperties.mica. In addition, the default widget properties and any application
specific properties can also be set in these files. Every graphics object has all 60 or so of it’s
attributes as properties in addition to any specific properties it may have. The translation tab
the event handlers assigned to a graphics object are also properties and in the future event ha
and widget prototype classes will also be able to be specified using properties (and property

Drag-and-Drop and Clipboard cut-copy-paste functionality is built-in to Mica. Any graphics obj
can be made a drag-and-drop source and/or target and actions for drag-over and drag-under
are generated by the drag-and-drop manager.

Undo-redo-repeatable commands objects are used by the event handlers and a globally acc
‘transaction manager’ collects these commands and manages them for programs written usi
Mica.

Extensive support for help is provided. Help can be assigned to any graphics object and can
plain text string or a object that describes the text and the attributes of the text and background
types of help are: toolhint (a smallish message), balloon (a larger toolhint with callout), statusb
message to be displayed in the status bar), dialog (a message to be displayed in a dialog bo
helpviewerclass formats and displays a very simple formatted text file as a navigable help win

Specialized renderers can be assigned to each graphics object. Default renderers are suppli
Mica. The types of renderers are: shadow, lineEnds, border, gradient, booleanState, before, 
background, and visibility.
4 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



sses
nts
om-

ing in
erride
cking

nged
ophis-
Architecture - The Layered Approach

Mica is layered as follows, such that the lower layers know nothing of the layers above:

• Mica Editors

• Mica Part Assemblies

• Mica Widgets

• Mica Parts, Containers and Shapes

• Mica MiRenderer, MiCanvas

• java.AWT Graphics

The AWT Layer

Mica uses the drawing capability of the AWT Graphics class, the AWT Frame and Dialog cla
for window handling, and AWT Canvas for drawing output and AWT Event handling. AWT Fo
and AWT Colors are using for rendering. Upon this is built a complete user-interface toolkit c
bined with a 2D vector graphics library and uponthisare application-sized widgets with which one
can easily create graphical applications.

The Mica-AWT Interface Layer
The AWT Graphics class is subclassed by MiRenderer which adds an API that supports draw
world coordinates, device coordinate specialized renderers and the pushing and popping of ov
attributes. The AWT Canvas class is subclassed by MiCanvas and adds support for window lo
and the event handling and animation thread.

The Mica Construction Layer

All graphics (shapes, widgets, choosers, editors, windows) in Mica are MiParts, which are arra
in groups using MiContainers. Shapes (like line, circle, rectangle, text,...) are used by more s
ticated parts to create their appearance.

The Mica Widgets Layer
This layer contains standard widgets which are built using shapes and other widgets.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 5



,...)

ither

a
rting
ctions
m to

ny

ble,
ica has
rder
 para-

. This
ndled
ired

draw-
The Mica Parts Layer
This layer contains large assemblies of widgets into tools like choosers (font, color, line width
and pre-built menus, toolbars and main windows.

The Mica Editors Layer
This layer contains pre-built editors for graphing, drawing and diagramming that can be used e
as stand-alone windows or incorporated in other windows.

Event and Action Handling

Simply put: Mica manages an AWT Canvas in a AWT window, drawing Mica shapes and Mic
widgets in the Canvas, watching for AWT Events generated by the user in the Canvas, conve
them to Mica events, forwarding these events to the shapes and widgets, who generate Mica a
that larger assemblies of widgets do something intelligent with, just like the user intended the
do.

MiParts

Just about everything in Mica is a MiPart and Mica has been designed in order to provide ma
convenient ways to display, arrange, manipulate, inquire and interact with these MiParts.

MiParts are the basic geometric construction element in Mica. They have a name, are drawa
have attributes, receive and process events, generate actions, and many more capabilities. M
been intentionally designed to have all parts be very powerful, full-featured objects. This is in o
to make programming with Mica easy and rewarding (when memory considerations become
mount, lightweight and very lightweight shapes can be used).

Through the use of containers and references, a part-container hierarchy can be constructed
event and action propagations, drawing and other aspects of this hierarchy is automatically ha
in Mica.Many traditional convolutions associated with programming GUIs are no longer requ
with Mica. Much of the tedious ‘housekeeping’ is handled by Mica itself, wherever possible.
Examples of this are layout validation and invalidations, the enabling of actions and events, re
ing of shapes, etc.
6 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



a and

 to set,

ave.

f it’s

ethods
vior,

igned

ss-spe-
on-
nd

re are
MiPart Functionality Overview

This section lists the major areas of functionality of every MiPart and describes the basic ide
scope of each area.

Named Resources

MiParts have an unbounded array of named resources available for you to use and methods
get, remove and iterate through them.

Life and Death Management

MiParts have methods tocopy(), deepCopy(), deleteSelf(), removeSelf() (from all containers),
replaceSelf(MiPart)which are fully aware of any Attachments and Connections the part may h

Deep Connections

MiParts have methods which support the iteration through all connections of the part and all o
parts.

Drag and Drop Management

MiParts may be a source of and/or a target of a drag and drop operation. As such there are m
to indicate if such functionality is enabled (see MiAttributes), specify the drag and drop beha
how the part will import and export data and what their valid data formats are.

Attributes

There are numerous methods to set and get individual attributes of a MiPart as well as it’s ass
MiAttributes object.

Properties

Properties can be set and inquired and include all a MiPart’s attributes and additional subcla
cific properties. In addition, a MiPropertyDescription can be obtained for each property that c
tains information about the type of the value of the property and list all valid values (if finite) a
validate new values of the property.

Focus Management

Each part has the potential of having the current keyboard, mouse and/or enter-key focus. The
methods to request and inquire each kind of focus.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 7



, on
-left-

es
ns on
as

en

their
o be
nd to

ods
ss of
Select State, Sensitivity, and Visibility and Hidden State Management

There are methods to set and get the basic state of the MiPart.

Point Management

Methods to inquire, append, insert, and remove points are available for all MiParts. However
parts that are not MiMultiPointShapes, the available points are the lower-left-hand and upper
hand corners and they can be inquired only.

Geometry Management

There are extensive methods to inquire and modify the geometry of every MiPart. This includ
operations such as changing it’s size and position. These methods are grouped into operatio
the center, sides, height, width and bounds of the MiPart. In addition, basic operations such 
translate, rotate and scale are available.

Pick Management

Pick management performs two functions: 1) indicating whether the MiPart intersects the giv
point and 2), returning a list of MiParts that intersect the given point.

Draw Management

MiParts have no draw methods that are available for your use; they are redrawn by Mica when
appearance or geometry changes. However there are methods to specify that the MiPart is t
drawn to and redrawn from a (double) buffer, to create an Image from an area of the MiPart, a
halt the current thread until the MiPart is redrawn (waitUntilRedrawn()). Note that a whole root
window can be double buffered by using the specialized methods on their MiCanvas object.

Attachment Management

MiParts have methods to append, inquire and remove attached MiParts.

Container Content Management

All MiParts have methods to append, inquire and remove other MiParts. However these meth
are only functional for MiContainers. Having MiPart implement these methods means a lot le
you having to explicitly test each MiPart to see if it is a MiContainer.
8 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



is
er).

rred

of the
areas

g is
his is

e and
ly if

e avail-
n-
MiParts have methods that act on actual parts (appendPart(MiPart))and semantic parts: items
(appendItem(MiPart)). Items are usually actual parts except in cases like MiLists (where an item
a row in the list), and like MiEditors with layers (where items are the shapes in the current lay

Containers management

Methods are available to append, insert and inquire containers of the MiPart.

Bounds Management

Methods to set and get inner, outer and draw bounds and to set and get minimum and prefe
sizes (which override those of any layout associated with the MiPart).

Invalid Area Management

Each MiPart has methods to invalidate areas within it’s bounds, causing a subsequent redraw
MiPart. This, however, rarely if ever needs to be used because Mica automatically invalidates
that need it.

Other methods specify whether or not the MiPart is anopaque rectangle(the default is that it is not
unless it is an instance of MiEditor, MiTable or MiMenu). If it is a opaque rectangle then nothin
drawn underneath the MiPart. The MiPart is assigned a draw manager that takes care of this. T
useful for both speed of execution and for aesthetics of appearance.

Layout Management

Provided are the methods to set and get the MiiLayout assigned to the MiPart and to invalidat
test the validity of any such layout. The ability to invalidate the MiPart’s layout, however, rare
ever needs to be used because Mica automatically invalidates layouts that need it.

Connection Management

MiConnections can be appended, inserted, removed and inquired. Convenience methods ar
able to get all of a MiParts parents and children and to return whether of not the MiPart is co
nected to another, given, MiPart.

Connection Point Management

A MiConnectionPointManager can be assigned to the MiPart (See chapter on Connections).

Event Handling
The Mica Graphics Framework (4/19/98) DRAFT 1.02 9



pend,

ally
nt
m
he

nter-

lly the
chap-
times
m-

d only
d with
art

at rep-
pos-

tions
Any number of event handlers can be assigned to any MiPart and MiParts have methods to ap
insert and remove and enable/disable event handlers.

If a event handler is assigned to the MiPart and is not position dependent then it is automatic
registered with the MiPart’s window (if and when it has a containing window) as a global eve
handler (i.e. a hot key/accelerator event handler. Similarly it will be automatically removed fro
the window if the event handler is removed from the MiPart or if the MiPart is removed from t
window).

There are also methods that inquire what events the MiPart (i.e. all of it’s event handlers) is i
ested in.

Action Handling

A large number of methods are provided to append, insert, and remove action handlers (actua
MiiActions that are to be dispatched to the MiiActionHandler are what are registered; see the
ter on Actions). A number of methods are also available to register callbacks, which are some
more convenient to code that action handlers and which simply send a text String to a MiiCo
mandHandler object.

Action Generation

A number of actions are generated directly by the MiPart class. Some of these are generate
when there is a action handler registered that is interested in the action. These will be marke
a *. The others will be generated and iterate through each action handler assigned to the MiP
looking for an interested handler. These others will then check a special composite handler th
resents the action handlers of all of the MiPart’s containers and their containers, etc. If this com
ite handler is interested, then the action is forwarded up the part-container hierarchy. The ac
generated by the MiPart are:

• Mi_COPY_ACTION

• Mi_REPLACE_ACTION

• Mi_DELETE_ACTION

• Mi_GOT_KEYBOARD_FOCUS_ACTION

• Mi_LOST_KEYBOARD_FOCUS_ACTION

• Mi_GOT_ENTER_KEY_FOCUS_ACTION

• Mi_LOST_ENTER_KEY_FOCUS_ACTION

• Mi_GOT_MOUSE_FOCUS_ACTION

• Mi_LOST_MOUSE_FOCUS_ACTION
10 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



tors.
r it’s
r it’s

iPart.
• Mi_SELECTED_ACTION

• Mi_DESELECTED_ACTION

• Mi_HIDDEN_ACTION

• Mi_UNHIDDEN_ACTION

• Mi_PART_VISIBLE_ACTION

• Mi_PART_INVISIBLE_ACTION

• Mi_INVISIBLE_ACTION

• Mi_VISIBLE_ACTION

• Mi_DRAW_ACTION*

• Mi_SIZE_CHANGE_ACTION*

• Mi_POSITION_CHANGE_ACTION*

• Mi_GEOMETRY_CHANGE_ACTION*

• Mi_APPEARANCE_CHANGE_ACTION*

Manipulator Management

These few methods support two kinds of manipulators: part manipulators and layout manipula
For each of these manipulators there is a method to create the manipulator (for the MiPart o
layout) and a method to get the manipulator that has already been assigned to the MiPart (o
layout) if any.

Special Containers Management

MiParts have 3 methods that return important containers of the MiPart. These methods are:

MiWindow getRootWindow()

MiEditor getContainingEditor()

MiWindow getContainingWindow()

Debug Management

There are a number of methods that are dedicated to helping track what is happening to the M
For example there is a getID() method that will a unique integer identifying the MiPart.
The Mica Graphics Framework (4/19/98) DRAFT 1.02 11



The MiPart Class Hierarchy

MiPart

MiArc

MiCircle

MiEllipse

MiEllipticalArc

MiImage

MiLiteShapesContainer

MiMultiPointShape

MiLine

MiPolyline

MiPolyPoint

MiPolygon

MiTriangle

MiRectangle

MiRoundRectangle

MiText

MiVeryLightweightShape

MiContainer

MiLayout

MiManipulatableLayout

MiRowColBaseLayout

MiColumnLayout

MiRowLayout

MiGridLayout

Mi2DMeshGraphLayout

MiCrossBarGraphLayout

MiLineGraphLayout

MiOmegaGraphLayout

MiOutlineGraphLayout

MiRingGraphLayout

MiStarGraphLayout

MiTreeGraphLayout
12 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



MiUndirGraphLayout

MiPolyLayout

MiPolyConstraint

MiEditor

MiWindow

MiNativeWindow

MiNativeDialog

MiNativeMessageDialog

MiInternalWindow

MiDialog

MiMessageDialog

MiVisibleContainer

MiWidget

MiAdjuster

MiSlider

MiGauge

MiScrollBar

MiAttributeOptionMenu

MiBorderLookOptionMenu

MiColorOptionMenu

MiFontOptionMenu

MiFontPointSizeOptionMenu

MiLineEndsOptionMenu

MiLineWidthOptionMenu

MiBox

MiLabel

MiButton

MiCheckBox

MiCircleToggleButton

MiMenuLauncherButton

MiOptionMenu

MiPushButton

MiSpinButton

MiToggleButton
The Mica Graphics Framework (4/19/98) DRAFT 1.02 13



MiMenuItem

MiColorChooser

MiComboBox

MiExpandoBox

MiFontChooser

MiFileChooser

MiLabeledWidget

MiMenu

MiMenuBar

MiEditorMenuBar

MiOkCancelHelpButtons

MiPieChart

MiPlayerPanel

MiPropertyPanel

MiBasicPropertyPanel

MiComboPlusPropertyPanel

MiListPlusPropertyPanel

MiTablePropertyPanel

MiRadioBox

MiScrolledBox

MiStandardMenu

MiStatusBar

MiEditorStatusBar

MiBasicStatusField

MiCurrentTimeStatusField

MiMagnificationStatusField

MiMouseXYPositionStatusField

MiCurrentTimeStatusField

MiMagnificationStatusField

MiMouseXYPositionStatusField

MiTabbedFolder

MiTable

MiList

MiTreeList

MiTextField

MiToolBar
14 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



MiEditorToolBar

MiWindowBorder

LightweightShape Class Hierarchy

MiLightweightShape

MiArcLite

MiCircleLite

MiEllipseLite

MiImageLite

MiLineLite

MiPointLite

MiPolyLineLite

MiPolyPointLite

MiPolygonLite

MiRectLite

MiTextLite

Pre-Built Menu Class Hierarchy

MiiContextMenu

MiEditorMenu

MiConnectMenu

MiEditMenu

MiFileMenu

MiFormatMenu

MiGraphMenu

MiHelpMenu

MiLayoutMenu

MiShapeMenu

MiToolsMenu

MiViewMenu

MiEditorBackgroundMenu
The Mica Graphics Framework (4/19/98) DRAFT 1.02 15



The Command Handler Class Hierarchy

MiiCommandHandler

MiiTargetableCommandHandler

MiCommandHandler

MiLayoutPartsCommand

MiPanAndZoomCommand

MiConnectMenuCommands

MiReorderPartsCommand

MiDeletePartsCommand

MiEditMenuCommands

MiEditorBackgroundMenuCommands

MiFileMenuCommands

MiFormatMenuCommands

MiGraphMenuCommands

MiGraphPartsCommand

MiGroupPartsCommand

MiHelpMenuCommands

MiIExecuteCommand

MiIconifyPartsCommand

MiLayoutMenuCommands

. MiReplacePartsCommand

. MiSelectPartsCommand

. MiShapeMenuCommands

. MiShapePopupMenuCommands

. MiToolsMenuCommands

. MiTransactionCommandAdapter

. MiTranslatePartsCommand

. MiViewMenuCommands

The Event Handler Class Hierarchy

MiiEventHandler

MiEventHandler
16 DRAFT 1.02 The Mica Graphics Framework (4/19/98)



MiIClickAndDrop

MiICreateConnection

MiICreateMultiPointObject

MiICreateObject

MiICreateText

MiIDeleteObjectUnderMouse

MiIDeleteSelectedObjects

MiIDeselectAll

MiIDisplayContextCursor

MiIDisplayContextMenu

MiIDisplayHelpDialog

MiIDisplayToolHints

MiIDragAndCopyWithMouse

MiIDragBackgroundPan

MiIDragObjectUnderMouse

MiIDragSelectedObjects

MiIDragger

MiIExecuteActionHandler

MiIExecuteCommand

MiIFlowEditorEventHandler

MiIFullScreenCursor

MiIJumpPan

MiIMouseEnterAndExit

MiIMouseFocus

MiINormalizedPan

MiIOnePtPan

MiIPan

MiIPartInspector

MiPlayEventSound

MiIPopup

MiISetDebugTraceModes

MiIPrintGraphicsStructures

MiIPrintPostScript

MiIReCalcLayouts

MiIRedraw

MiIRubberbandBounds
The Mica Graphics Framework (4/19/98) DRAFT 1.02 17



MiIRubberbandPoint

MiISelectArea

MiISelectObjectUnderMouse

MiIZoomArea

MiIZoomAroundMouse
18 DRAFT 1.02 The Mica Graphics Framework (4/19/98)


	About Mica
	Acknowledgements
	Design Goals
	Features
	Architecture - The Layered Approach
	The AWT Layer
	The Mica-AWT Interface Layer
	The Mica Construction Layer
	The Mica Widgets Layer
	The Mica Parts Layer
	The Mica Editors Layer

	Event and Action Handling
	MiParts
	MiPart Functionality Overview
	The MiPart Class Hierarchy
	LightweightShape Class Hierarchy
	Pre-Built Menu Class Hierarchy
	The Command Handler Class Hierarchy
	The Event Handler Class Hierarchy

