
An Architecture For Evolving
Graphics Applications

Michael L. Davis

Software Farm, Inc.
(michael@bhi.com)

August 10, 1992
,
l-

i-
.

Abstract

An important aspect of the architecture of interactive
systems is the isolation of the functional aspects of
the system from each other as well as from the user
interface. This isolation often consists only of the
separation of the programming code modules, ignor-
ing as too complicated the further goal of separation
of knowledge as well.

By the separation of knowledge it is meant that the
application knows absolutely nothing about how it is
represented visually, and conversely the user inter-
face knows absolutely nothing about what it is repre-
senting.

This paper presents a scalable architecture to sup-
port this separation and discuses examples of the
use of this architecture in various application
domains.

Keywords - User Interface, Application Framework,
User Interface Management System

1.0 Introduction

An evolvable architecture for any type of application
has a number of notable qualities. These qualities
consist of minimizing programming effort and soft-
ware defects under the following stressful conditions:

• Changes to the functionality of the application

• Changes to the type of software technology used
to provide the application functionality

• Changes in the software personnel who are
responsible for a the application software

• Changes to the number of hardware platforms
supported.

• Changes in the underlying software standards not
envisioned when the application software was
written

It is proposed that these qualities are present in
architectures that have the following attributes:

1. Provides a paradigm of the overall program structure
indicating where each major component of functiona
ity should be placed within the architecture and how
the components should interact with each other.

2. Provides the guidelines to enable, with minimal cogn
tive load, straight forward and timely implementation
1 of 6

Nomenclature
3. Allows for future changes to any component to be as
straight forward and to have as little impact on the
other components as possible.

4. Supports the reuse of major components in other simi-
lar applications.

5. Easily supports the incorporation of new or unantici-
pated functionality into existing applications.

It should also be straight forward to design, imple-
ment, debug, modify and maintain. Applications writ-
ten with an architecture with these qualities will result
in these same qualities being incorporated into the
design and implementation of the internal compo-
nents of the architecture framework.

2.0 Nomenclature

The terminology of software system architectures is
still non-standardized and so the nomenclature used
in this paper will be briefly defined. An application is
a group of software components collected together
into a unified whole. A component is a subset of an
application that supplies a single service. The
semantic component is the part of an application that
contains the software to related to the purpose of the
application. The presentation component is that part
of the application that supports the user in viewing
and interacting with the application. A Functional
components is a semantic or presentation compo-
nent. The VFACE component is the remaining part of
the application that ties the other parts together (i.e
the brains and glue) and makes the software a whole
application instead of just a group of components

3.0 Overview

We call this architecture the ‘VFACE’ architecture.

The VFACE name is derived from the letter V (the top
two vertices, representing the Presentation and
Functional components, are only connected by a
third vertex, representing the VFACE component)
concatenated with the word interFACE.

This architecture requires that the Functionality com-
ponent and Presentation component be completely

separated and made completely dependant on
(slaves of) a third, master component, the VFACE.
The VFACE component contains the operational con-
trol (i.e. the brains, the glue) of a program. In other
words, the same Functionality component and Pre-
sentation component can be combined using differ-
ent VFACE components to create, operationally,
quite different applications.

This architecture can be thought of as a macro-
object-oriented design or a miniature client-server
architecture

Elements of a well designed VFACE architecture are:

• That the functional components have no knowl-
edge of each other

• That the functional components are completely
dependant on the VFACE component. They
respond to commands and requests and may only
send data and information about changes to the
VFACE that were requested

• The knowledge the VFACE component has about
the functional components is minimal

3.1 Command Flow

The control for an application using the VFACE archi-
tecture is contained entirely in the VFACE compo-
nent. All other components act as servers and only
supply services to the VFACE component (see
Figure 1 on page 3).

Presentation Semantics

VFACE
An Architecture For Evolving Graphics Applications 2 of 6

VFACE Design and Implementation Methodologies
FIGURE 1. Command flow in the VFACE Architecture.

3.2 Information Flow

Information flows between the VFACE component
and the other components only. Information may not
flow directly between two functional components
(see Figure 2 on page 3). When information is sent to
the VFACE component, it is only in response to a
previous request by the VFACE component that it do
so (possibly during initialization).

FIGURE 2. Information flow in the VFACE Architecture.

3.3 Segmentation of the Major Components

The architecture can be expanded to include other
specialized functional components (see Figure 1 on
page 4). The presentation and semantic components
can be decomposed into other, independent sub-
components. This decomposition can proceed to any
depth using the design technique called vertical par-
titioning.

4.0 VFACE Design and Implementation
Methodologies

4.1 Design

The design of an application using the VFACE archi-
tecture consists of assessing the optimal composition

and style of the functional components, This can be
reduced to the following steps:

• Determine what the functional components will be

• Determine what public interface each functional
component will present to the VFACE component

• Determine what the operations are that the
VFACE component will provide

• Determine what requirements the VFACE compo-
nent demands of the public interface to the func-
tional components (with respect to the operations
the VFACE component will preform using these
interfaces).

4.2 Implementation

The implementation of an application using the
VFACE architecture is divided into implementing the
functional components and the VFACE controller.
The functional components are implemented as
libraries.

As for event driven functional component designs (for
example user interfaces) each component is given
the name of a destination, in the VFACE component,
to which it will send messages with specific data
which the VFACE component will process and react
as appropriate.

The specific implementation of the VFACE compo-
nent itself is not specified by this architecture (how-
ever see “Experience” on page 5). Very economical
implementations are possible for the development of
prototypes and complex implementations are possi-
ble for more complex applications.

All linkage and program state machine code goes
into the VFACE component. As a rule-of-thumb, all
code that does not seem to fit into any component
gets put into the VFACE component by default.

5.0 Advantages and Disadvantages

5.1 Advantages

Separating the components allows any component to
be redesigned, rewritten, ported to another platform

Presentation Semantics

VFACE
An Architecture For Evolving Graphics Applications 3 of 6

Related Work

Semantics

VFACE

Presentation

Graphics Editor

GUI Toolkit

Toolkit
Video/Audio

Component

Report

Numerical
Analysis

Generation

External
Instrumentation

FIGURE 1. Adding Components to the VFACE Architecture
or be run over a network without having to change
anything in any other components.

Functional components are conceptually like old
fashioned libraries (even though they may be imple-
mented in an object-oriented fashion). They contain
no specific program semantics or behavior, just func-
tionality. This makes the functional components reus-
able in other applications that require the same or
similar functionality, as proven with other libraries like
the standard ‘C’ library. This also makes these com-
ponents easy to write as their design is already famil-
iar to many programmers.

5.2 Disadvantages

Designing functional components is isomorphic to
designing objects. And similar to the task of object-
oriented programming in-the-small, there is a
requirement for a good deal of design time up front,
deciding what the components will be and, more diffi-
cult, what their public interfaces will be.

There has been some arguments about the ability to
have a clean design (code separation) in the face of
performance requirements, especially when one of
the functional components consumes vast quantities
of time (for example a 3D graphics component). The
overhead, with respect to execution time, of the
VFACE architecture is insignificant because of the
macro nature of the functional components. This can
be qualitatively verified by examining the ratio of the

amount of time spent by an executing program spent
within the code specifically added to separate the
functional components to the time spent within the
sluggish functional component.

6.0 Related Work

The generality of the VFACE architecture encom-
passes many previous designs with sometimes sub-
tle, but essential alterations.

Most applications today make calls directly to a
graphics library standard. This provides no standard
isolation at all between the semantic component of
the application and its presentation. A better
approach is for the application to make calls to a
layer of code ‘wrapped around’ the graphics library.
This provides some isolation of the application from
any future changes made to the graphics standard
library as well as providing portability to other graph-
ics libraries.

The Model-View-Controller (MVC) design [Krasner
and Pope, 1988], is quite good except that it permits
the View (the presentation component) to access the
Model (the semantic component) directly.

The Seeheim architecture [Plaff, 85] is similar to the
MVC architecture except that also permits unneces-
An Architecture For Evolving Graphics Applications 4 of 6

Experience
sary communication between components, namely
the semantic component is allowed to access the
presentation component directly.

The Abstraction-Link-View design [Hill, 1992] uses a
sophisticated constraint manager to manage the
links between Abstraction (semantics) and View (pre-
sentation). Unfortunately the control of the applica-
tion remains in the semantic component. To alter this
design to gain the benefits of a VFACE architecture
one could use a Abstraction-Link-VFACE-Link-View
approach (where control would be moved to the
VFACE component).

7.0 Experience

The following sections describe our experience with
developing applications using the VFACE architec-
ture.

7.1 VFACE Controller Implementation

Examples of internal VFACE designs and methods of
implementation are:

A collection of a large number of individually coded
routines to interpret user interface events, determine
specific responses based on the current application
state, and send corresponding commands to the pre-
sentation and semantic components. We call this the
brute-force method.

A system of high-level event handlers [similar to
Green, 86] which are networked together and are
programmed to handle user interface (presentation)
events and semantic events.

A system where there are many small data objects
that are shared across partition boundaries, each
containing semantic data (accessible only by the
semantic and VFACE components), presentation
data (accessible only by the presentation and VFACE
components) and data needed by the VFACE com-
ponent itself.

7.2 Program Examples

Examples of applications built using the VFACE
architecture:

7.3 A Direct-Manipulation Editor for Displaying
and Editing Diagrams

In this application the VFACE component was written
using the brute-force method (see “VFACE Controller
Implementation” on page 5). The relative size of the
VFACE component is about 6% of the size of the
entire application (in lines of code). Minimizing the
size of the VFACE component is felt to be a good
thing. Minimizing the knowledge that the VFACE
component has of the specifics of the semantic com-
ponent and presentation component is also felt to be
a good thing. This was a straight forward, simple
implementation task.

7.4 A VFACE architecture development
environment

In applications generated using this development
environment, the VFACE component consists of an
interpreter driven by a high-level object-oriented lan-
guage [VisualADE, 92]. The language describes the
‘glue’ and constraints between the various functional
components. In addition, a large number of presenta-
tion components are provided to ease development
of direct-manipulation editors and standard user
interfaces. These components conform to a stan-
dardized interface that the VFACE component inter-
preter recognizes.

8.0 Conclusion and Future Work

The VFACE architecture provides a useful implemen-
tation paradigm for almost all programs including
those containing graphics, databases, multimedia
and external processes.

We are currently doing research to determine the
best method of adding a reusable persistence
scheme to the architecture. A particularly likely can-
didate is the treatment of the VFACE component as a
An Architecture For Evolving Graphics Applications 5 of 6

References
persistent shared memory controller (see “VFACE
Controller Implementation” on page 5).

We are also currently researching methods of adding
rules to the system. We are especially interested in
supporting design rule checking (both heuristic rules
which suggest operations and strict rules which gen-
erate and validate operations).

9.0 References

Krasner and Pope (1988). A cookbook for using the
model-view-controller user interface paradigm in
smalltalk-80, Journal of Object-Oriented Program-
ming August/September, pp. 26-49.

Plaff, G. E. (ed.) (1985). User Interface Management
Systems, Heidelberg: Springer-Verlag.

Green. Mark (1986). A Survey of Three Dialog Mod-
els, ACM Transactions on Graphics, Vol. 5, No. 3, pp.
24-275.

VisualADE (1992). User’s Guide and Programmer’s
Manual, Software Farm, Inc.

Hill, Ralph D. (1992). The Abstraction-Link-View Par-
adigm: Using Constraints to Connect User Interfaces
to Applications, ACM CHI Conference Proceedings,
pp 335-342.
An Architecture For Evolving Graphics Applications 6 of 6

	FIGURE 1. Adding Components to the VFACE Architecture
	An Architecture For Evolving Graphics Applications
	Michael L. Davis
	Software Farm, Inc. (michael@bhi.com)
	August 10, 1992
	1.0 Introduction
	1. Provides a paradigm of the overall program structure, indicating where each major component of...
	2. Provides the guidelines to enable, with minimal cognitive load, straight forward and timely im...
	3. Allows for future changes to any component to be as straight forward and to have as little imp...
	4. Supports the reuse of major components in other similar applications.
	5. Easily supports the incorporation of new or unanticipated functionality into existing applicat...

	2.0 Nomenclature
	3.0 Overview
	3.1 Command Flow
	FIGURE 1. Command flow in the VFACE Architecture.

	3.2 Information Flow
	FIGURE 2. Information flow in the VFACE Architecture.

	3.3 Segmentation of the Major Components

	4.0 VFACE Design and Implementation Methodologies
	4.1 Design
	4.2 Implementation

	5.0 Advantages and Disadvantages
	5.1 Advantages
	5.2 Disadvantages

	6.0 Related Work
	7.0 Experience
	7.1 VFACE Controller Implementation
	7.2 Program Examples
	7.3 A Direct-Manipulation Editor for Displaying and Editing Diagrams
	7.4 A VFACE architecture development environment

	8.0 Conclusion and Future Work
	9.0 References

