
/***
 PGL

Portable Graphics Layer

 Documentation

 Ver. 1.0

1/11/91

Copyright (C) Software Farm 1990, 1991 All Rights Reserved.
***/

 TABLE OF CONTENTS

1. Description and Objectives.

2. Overview of Interface

3. System Operations.

4. Fundamental Objects.

5. Primitives.

6. Standard Object Operations.

7. Event Management.

8. Context.

9. Tag Management

10. Searching Operations.

11. Transforms.

12. High Level Operations.

13. Text Font System.

14. File system.
Page 1

15. Cursor Management.

16. Memory Management.

17. Bitmap Management.

18. Window Style Management.

19. Low Level Interface.

A. Examples

 DETAILED TABLE OF CONTENTS

1. Description and Objectives.

2. Overview of Interface and Operations.

Include files.
Naming conventions.
Type names and definitions.

3. System Operations.

Ginit 14
Gtermin 20
Gconfig 21
Ginqconfig 21

4. Fundamental Objects.

segment 24
Gsegment
Gmodsegment
Ginqsegment

view 27
Gview
Gmodview
Ginqview

window 30
Gwindow
Gmodwindow
Ginqwindow

device 33
Gdevice
Gmoddevice
Ginqdevice

picture 37
Gpicture
Ginqpicture
Gfirstpicture
Glastpicture
Page 2

Gnextpicture
Gprevpicture
Gexcisepicturefromobject
Gappendpicturetoobject
Gprependpicturetoobject
Gpopup
Gpushunder

5. Primitives. 43

create
inquire

arc 45
Garc
Gcarc
Gexecarc
Gexeccarc
Ginqarc
Gmodarc
Ggetarrayarc
Gdrawarc

call 48
Gcall
Gccall
Gexeccall
Gexecccall
Ginqcall
Gmodcall
Ggetarraycall

ellipse 51
Gellipse
Gcellipse
Gexecellipse
Gexeccellipse
Ginqellipse
Gmodellipse
Ggetarrayellipse
Gdrawellipse

line 54
Gline
Gcline
Gexecline
Gexeccline
Ginqline
Gmodline
Ggetarrayline
Gdrawline

polygon 57
Gpolygon
Gcpolygon
Gexecpolygon
Gexeccpolygon
Ginqpolygon
Page 3

Gmodpolygon
Ggetarraypolygon
Gdrawpolygon

polyline 61
Gpolyline
Gcpolyline
Gexecpolyline
Gexeccpolyline
Ginqpolyline
Gmodpolyline
Ggetarraypolyline
Gdrawpolyline

rectangle 63
Grect
Gcrect
Gexecrect
Gexeccrect
Ginqrect
Gmodrect
Ggetarrayrect
Gdrawrect

text 67
Gtext
Gctext
Gexectext
Gexecctext
Ginqtext
Gmodtext
Ggetarraytext
Gdrawtext

userobj 67
Guserobj
Gmbrfuncs
Gsetmemfuncsforsubtype
Ggetmemfuncsforsubtype
Gdeletememfuncs
Gexecuserobj
Ginquserobj
Gmoduserobj
Ggetarrayuserobj
Gdrawuserobj
Gundrawuserobj
Goverridememberfunction
Grecalcextremauserobj

6. Standard Object Operations. 71

Move

Gtranslate 72
Gposition 74
Grotate 76
Gscale 77
Page 4

Gresize 79

Draw 81

Gdraw 82
Gmoddraw
Ginqdraw
Gdrawpushstate
Gdrawpopstate
Gmodtransform
Ginqtransform

Ghide 84
Gsetclip 86
Gunsetclip 88
Gsetdeviceclip 89
Gunsetdeviceclip 90

Inquire

Ggettype 91
Ggetextrema 92

Open

Gopen 94
Gclose 95
Ggetopen 96
Gpushopen 97
Gpopopen 99

Binary Image Array

Ggetarray 101
Gexecarray 103
Gapplyarray 104

Traversal

Gnext 106
Gprevious 108
Gfirst 110
Glast 112
Gfirstelement 114
Glastelement 116
Gparent 118

Manipulation

Gexcise 120
Ginsert 121
Gappend 123
Gprepend 125
Gdelete 127
Gcopy 129
Page 5

7. Event Management. 132

Event Packet Manipulation

Gwaitforevent 135
Gpollforevent 136
Gputevent 137

Event Packet Inquire

Gevent_type 139
Gevent_value 141
Gevent_bstate 142
Gevent_shiftstate 143
Gevent_deltadevx 144
Gevent_deltadevy 145
Gevent_devx 146
Gevent_devy 147
Gevent_x 148
Gevent_y 149
Gevent_view 150
Gevent_window 151
Gevent_picture 152
Gevent_device 153
Gevent_time 154

8. Context. 155

Context Type

Ggetobjctxtype 159
Gsetobjctxtype 160
Ggetopenctxtype 161
Gsetopenctxtype 162

Open Context 163

Gpushopenctx 164
Gpopopenctx 165
Ggetopenctx 166
Gsetopenctx 167
Ggetopenctxvalue 168
Gsetopenctxvalue 169
Gsetopenctxvalues 170

Object Context 171

Ggetobjctx 172
Gsetobjctx 173
Ggetobjctxvalue 174
Gsetobjctxvalue 175
Gsetobjctxvalues 176
Page 6

General

Ggetctxvalue 178
Gmakectx 179
Gderivectx 180

9. Tag Management 181

Gsetopentag 182
Ggetopentag 183
Gsettag 184
Ggettag 185
Gsettaghi 186
Ggettaghi 187
Gsettaglo 188
Ggettaglo 189

10. Searching Operations. 190

Extrema Search

Gpick 191
Gpickobj 193
Gpickstate 195
Gpushpickstate 197
Gpoppickstate 198

Parameter Search

Gsearch 199
Gsearchobj 201
Gsearchstate 203
Gpushsearchstate 206
Gpopsearchstate 207

Application Defined Search

Gtraverse 208
Ggetnextobjectwithname210

11. Transforms.

Gpanview 212

Viewport to/from Device

Gvctodc 213
Gdctovc 214
Gvtoddelta 215
Gdtovdelta 216

Viewport to/from World

Gvctowc 217
Page 7

Gwctovc 218
Gvtowdelta 219
Gwtovdelta 220

Device to/from World

Gdctowc 221
Gwctodc 222
Gdtowdelta 223
Gwtoddelta 224

Device to/from Screen(virtual)

Gdctosc 225
Gsctodc 226
Gdtosdelta 227
Gstoddelta 228

World to/from Screen(virtual)

Gwctosc 229

12. High Level Operations. 230

Gzoom 231
Gpan 233
Gmove 234

13. Text Font System.

Greadfont 239
Gwritefont 241
Gdeletefont 243
Ginquirefont 244
Gfont 245
Gfontchar 246

14. File system.

Gfilewrite 247
Gfileread 248
Gfilestate 249
Gpushfilestate 253
Gpopfilestate 254
Gwritefile 255
Greadfile 256
Gwrite 257

15. Cursor Management.

Gsetcursor 259
Gdrawcursor 260
Gsetcursorbounds 261
Gsetdefaultcursorbounds 262
Page 8

Gsetcursorimage 263
Gctlcursor 264
Ghidecursor 265
Gunhidecursor 266

16. Memory Management.

Gmalloc 268
Gfree 269
Gdebugmalloc 270
Gtestmem 271

17. Bitmap Management.272

Gbitmap 273
Gresizebitmap 274
Grotatebitmap 275
Gloadbitmap 276
Gfreebitmappattern 277

18. Window Style Management. 278

Gwstyle 279
Gopenwstyle 281
Gpushopenwstyle 282
Gpopopenwstyle 283
Gapplywstyle 284
Gapplywstylelist 285

19. Low Level Interface. 286

Gvideodriver 288
Ginqvideodriver 291
Gmodvideodriver 293
Gdeletevideodriver 295

A. Examples 297

Portable Graphics Layer
Software Farm
www.swfm.com

Thank you for purchasing the finest portable graphics interface
available. We will do our best to give you many years of enjoyment and
satisfaction.

The Portable Graphics Layer (PGL) provides a high performance, broad,
multi-level interface to various standard graphics/windowing systems. This
therefore aids application development by allowing the software engineer
to devote time and effort on writing the application and not on the graphics
routines that may be required. Also, by recompiling, the application will run
Page 9

on any one of the hardware/software platforms supported now and in the future
by PGL. Finally, the application will not have to cripple its graphics
interface on any platform because PGL provides a consistent base of
functionality on all platforms, regardless of the underlying deficiencies.

PGL provides both an immediate and a retained (displaylist) graphics
interface.

The hardware platforms currently supported include:

IBM PC/XT/AT clones with DOS and a CGA, EGA, VGA and VEGA
enhanced EGA graphics cards.
SUN 3/XX, 4/XX, 386i, and Sparcstation Series workstations
under SunOS 3.x and 4.x.

The windowing systems currently supported include:

PGL Windows (built in windowing support for systems without such
support such as stock PC's).

SunView.
X Window System, Version 11 release 3.

Platforms and windowing systems that are soon to be supported include:

MicroSoft Windows.
Hercules Graphics cards in IBM PC/XT/AT clones.
Unix SystemV/386 support for abovementioned graphics cards.
View2/OpenLook
Motif

Graphics metafile standards to be supported include:

CGM
PostScript

The level of functionality of all aspects of PGL is
steadily increasing. The actual direction and content of any new feature
is often motivated by requests and suggestions of PGL users and other
interested parties. If there is a feature you desire that is either not
mentioned here, or is currently unimplemented, please communicate your needs
and we will try our best to get it into PGL as quickly as possible.

Rendering Functionality

Currently PGL is capable of rendering lines, polylines, ellipses, arcs,
bitmap/stroke font text, filled(pattern/solid)/raster-oped/unfilled
rectangles,
and polygons.
Two to 256 colors are supported with inherent capability for approximately
4 billion colors. Write modes supported are 'replace' and 'xor' at this time.

Windowing Functionality
Page 10

Currently PGL supports the concept of a world coordinate space
which is mapped to a viewport in a window on a virtual screen. The world space
is comprised of all 32bit integers, the viewport and virtual screen of 16bit
integers. The virtual screen effectively isolates the application from
the real (variable) size of the screen (either whole display device or
system window on the display device).

DisplayList Functionality

There is support at this time for six types of graphical 'objects':
picture, device, window, view, segment, and primitive. Primitives
are created and collected into segments, which can be nested in other
segments.
Devices, windows and views comprise a picture object which is what is
displayed.
It is possible to draw, insert, copy, delete, traverse (forwards and
backwards)
and perform other operations on any object. Support is also provided for
picking and searching 'through' objects.

There is also support for specification and manipulation of a
attribute object or 'graphical context'.

Event Functionality

Events are generated by the mouse, keyboard, and by the application.
Specific types of events may be ignored or requested for each view, and
a procedure to be called when these events occur may be registered for each
view. Mouse clicks, double clicks and cursor locking (no automatic tracking)
are supported. Cursors images may be redefined and/or hidden.

High Level Interaction Functionality

There is support in PGL for the application to easily zoom, pan,
and move objects. Application boundary conditions are specified and the rest
is handled by the appropriate PGL functions.

Software written with PGL must include the file

#include "graphics.h"

This file includes all the include files that are needed by the
application now and in the future. The sub-include files and their
descriptions
follow:

gtype.h The typedefs for all types used by PGL are here.

gappl.h This is the main application include file. It
contains information for most of the common PGL
functions.

gkbm.h This file contains the definitions of the
Page 11

keyboard/mouse interface.

garray.h This file contains all the garray structure
definitions for the Ggetarray, Gexecarray and
Gapplyarray functions.

gerror.h This file contains the list of error codes.

garg.h This file contains the list of vararg keywords.

gdebug.h This file contains structure definitions for
the debug interface.

glowface.h This file contains information about the low
level hardware interface.

gproto.h This file contains all the functional prototypes
for all the public graphics functions.

Graphics Data and Object Types

Data types are used to indicate the size of a particular value. It is
very important to specify the type of a value passed as a parameter in a
function call when the application is to be run on machines that have
differing
ideas of what the size of an integer (type int) is (i.e. the PC considers the
type int to be 16 bits and the SUN considers it to be 32 bits long).

Coordinate types are:Used for:

GT_COORDWorld coordinate type: for primitives, view
world dimensions

GT_VCOORDViewport coordinate type: for view viewport
dimensions.

GT_SCOORDScreen coordinate type: for window dimensions.

GT_DCOORDDevice coordinate type: for very low level draw
routines.

also

GT_UCOORDUnsigned world coordinate type: for unsigned
quantities such as height, width, etc.

GT_UVCOORDUnsigned viewport coordinate type.

GT_USCOORDUnsigned screen coordinate type.

Event types are:

GT_EVENTThe type of the event packet returned by the
Page 12

event routines.

GT_EVENTTYPEEvents returned have an ID of this type
indicating the general type of event.

GT_EVENTVALUEThe specific event is represented by a value
of this type (i.e. the ASCII representation
or a key).

GT_TIME Events have a time stamp of this type.

Graphics object handles have types:

GT_OBJECTGeneral graphical object type. All such objects
may be manipulated using the general object
functions.

Types associated with the graphic context:

GT_CTX The type of the graphical context handle.

GT_CTXTYPEThe type of the type of graphical context.

GT_ATT All attributes in a graphical context are of
this type. This means all colors, pattern types,
line widths, are of this type.

GT_UATT The type of all user attributes in a context.

General types:

GT_BITMAPThe type of the graphics bitmap handle.

GT_WSTYLEThe type of the graphics window style handle.

GT_DRIVERThe type of the hardware device driver
structure.

GT_EXTREMAThe type of the dimensional size structure.

GT_TYPE Object identification type: every graphics
object has an ID of this type.

GT_SCALEMultiplicative scale factors are specified by a
value of this type: (Segment call's have a
scale parameter of this type).

GT_ANGLERotation angles are of this type: (Segment calls
have a angle parameter of this type).

GT_TAG All graphics objects have tags that are of this
type.

GT_VIDEOMODEVideomodes are specified by a value of this
Page 13

type.

Function pointer types are

GT_FNPTRGeneral pointer to a function which returns int.

GT_VOIDFNPTRGeneral pointer to function which returns void.

and general portable types are:

GT_INT8 A type which is 8 bits long.
GT_UINT8

GT_INT16A type which is 16 bits long.
GT_UINT16

GT_INT32A type which is 32 bits long.
GT_UINT32

Naming Scheme

There is an attempt to keep graphics names logical and at least
identifiable. In that vein all names have a prefix of some sort.

Public:

*Functions:

General graphics functions

G Capital letter 'G' and lowercase letters following.

Graphics low level rendering function pointers

Gr_ Capital letter 'G', lowercase 'r', underscore, with
lowercase letters following.

*Data:

There is no public graphics data.

*Values:

General graphics values (defines)

G_ Capital letter 'G', underscore, with uppercase letters
following.

Graphics object types

GO_ Capital letters 'GO', underscore, with uppercase letters
Page 14

following.

Graphics keywords (used largely as variable argument function
parameters.

GARG_ Capital letters 'GARG', underscore, with uppercase
letters following.

*Types:

General typedefs used by graphics and applications

GT_ Capital letters 'GT', underscore with uppercase letters
following.

Internal:

*Functions:

General internal functions

g_ Lowercase g, followed by an underscore and lowercase
letters.

*Data:

gd_ Lowercase g, lowercase d, followed by an underscore
and lowercase letters.

*Values:

GI_ Uppercase letter 'G', 'I', followed by an underscore
and uppercase letters.

 PGL SYSTEM MANAGEMENT

Ginit() initialize graphics systems.

Gtermin() terminates the graphics system.

Gconfig(...) configure the graphics system.

Ginqconfig(...) inquire the configuration of the graphics system.

Ginit PGL SYSTEM MANAGEMENT Ginit

DEFINITION

Initializes the graphics system. This includes:
Page 15

1. Creating the default window style unless the application
has created and open one already. This window style is applied
to the root window on systems where PGL WINDOWS is the native
window system.

PURPOSE

To tell the graphics system to initialize itself.

OPERATION

int Ginit()

Returns zero if successful.

EXAMPLES

BUGS

SEE ALSO

Gwstyle, Gopenwstyle, Gdevice, Gtermin, Gconfig.

Gtermin PGL SYSTEM MANAGEMENT Gtermin

DEFINITION

Terminates the graphics system. This includes:

1. Closing all devices. This sends a termination message to the
window system and hardware drivers.

2. Freeing memory associated with the internal graphics system.

PURPOSE

To tell the graphics system to terminate itself.

OPERATION

void Gtermin()

EXAMPLES

BUGS

SEE ALSO

Gwstyle, Gopenwstyle, Gdevice, Ginit, Gconfig.

Gconfig PGL SYSTEM MANAGEMENT Gconfig
Page 16

DEFINITION

Configures the graphics system.

PURPOSE

To set and change internal elements of the graphics system, both
before and after initialization, that can not be changed by any other
methods.

OPERATION

void Gconfig(...)

This function takes GARG_ keyword, value pairs as parameters.

Valid keywords are:

GARG_NUMPOLYGONVLINESintMaximum number of edges a
horizontal slice though a filled
object will encounter. This
will allocate memory to support
the fill algorithm for this
worst case polygon.

G_DEFAULT_NUMPOLYVLINES is the default.

*Inquire

void Ginqconfig(...)

This function inquires the current configuration with
GARG keyword, value address pairs. All keywords
described above are valid.

EXAMPLES

BUGS

SEE ALSO

Gwstyle, Gopenwstyle, Gdevice, Ginit, Gtermin.

 PGL OBJECTS

There are six groups of objects: primitives, segments, views, windows,
devices, and pictures. Primitives are discussed in detail in another section.
Segments are ordered lists of primitives and other segments and are therefore
essentially hierarchical structures of graphic data. Views specify how and
where
Page 17

the data is to be rendered. Windows are user manipulated areas on a video
device
providing the 'paper on a desktop' metaphor. Devices are a representation of
the output hardware and it's characteristics. Pictures are symbolic
description
of the pipeline which takes graphic data to the graphical output device.

The graphics segment object is used to arrange the graphic data
primitives(which consists of lines, ellipses, text, etc.) into hierarchical
structures. The structure (which is completely determined by the application)
is composed of segments within segments and the use of the call primitive.
The call primitive treats the segment like a procedure by 'calling' the
segment
and then immediately returns to the primitive following the call. Therefore
a segment A may call other segments B ands C many times, and segments B and
C may be called by many other segments or may call segments themselves.

For example, a segment may contain the graphics describing a 'confirm
or cancel' button. There may be many menus displayed, each of which display
this button. The menus would therefore each have a call to the one segment
containing the button's description. (Note that the call primitive has an
optional translation factor built in).

The graphics view object is used to specify both what objects
are to be drawn (determined by the size of the world boundary) and to what
area on the screen they will be drawn to (determined by the size of the
viewport boundary). Note that the word 'boundary' is meant to specify a
rectangular area which is a subset of a larger rectangular area of the
same type.

The world boundary is a rectangular area which is a subset of the
entire world coordinate space. The size of the entire world coordinate space
is determined by the nature of the coordinates it uses which are the set of
32 bit integers at this time.
I.E. the world boundary is a subset of the rectangular bounds:

 {(-2147483648, -2147483648), (+2147483647, +2147483647)}.

Boundaries are specified by the coordinates of their lower left hand and
upper right hand corners. The world coordinate space is the area and
coordinates
that all graphics object primitives (such as lines and circles) are specified
in.

The viewport boundary is a rectangular area which is a subset of
the entire viewport coordinate space. Whenever a window is associated with a
view, the window maps to a subset of the viewport coordinate space, namely

 {(-32768, -32768), (+32767, +32767)}.

For example, suppose one wants to draw all primitives located between
(0,0) and (1000,1000) to the upper half of a window on the monitor.
Then one would specify a world boundary of (0,0),(1000,1000) and a viewport
boundary of (-32768, 0),(+32767, +32767).

The graphics window object is used by the application to customize
and manipulate the windows on video devices. These windows may be system level
Page 18

windows run by the likes of SunView or TWM under the X Window system. Or they
may be run by the window manager internal to PGL(called PGL Windows). Any sub-
window may be a PGL window and all windows on stock PCs are PGL windows.
Subwindows are regular windows except that they are confined to the area of
their parent window.

The window boundary is a rectangular area which is a subset of
the entire screen coordinate space. Whenever a device is associated with a
window, the device maps to a subset of the window coordinate space, namely

 {(-32768, -32768), (+32767, +32767)}.

For example, suppose one wants to position a window in the upper left
corner of the video screen. Then one would specify a screen boundary of
(-32768,0),(0,+32767).

The graphic device object is used to reference and configure the
output hardware(i.e. a video screen). Video, mouse and keyboard drivers
are installed in the device object and when the device is opened, these
drivers are initialized. Subsequently the device may be inquired as to the
size of the device (in device coordinates), maximum number of colors of the
device, etc. The drivers may be changed effecting an immediate termination of
the old driver and initialization of the new. In this way video modes may be
changed (i.e. in this way one can change PC's EGA mode to VGA mode at run
time).

The graphic picture object is used to specify the display pipeline,
which consists of the graphics data to draw, the view to use to transform the
graphics data, the window to display in, and the device to output to. The
picture is designed to allow maximum flexibility when mixing and matching
the objects in the display pipeline.

SEGMENT PGL OBJECTS
SEGMENT

DEFINITION

A segment is ordered list of primitives and other segments. When a
segment is created there are no required parameters and it is bereft
of any data. If it is the open segment (opened by a invoking 'Gopen'
or 'Gpushopen') then subsequent primitives are put into the segment
in sequential order.

TYPE

GO_SEGMENT
GO_CSEGMENT

ATTRIBUTES

GARG_HIDDEN

Specifies whether the segment is visible or not.
Page 19

OPERATIONS

*Create

GT_OBJECT Gsegment(va_alist)
va_dcl

GT_OBJECT Gcsegment(va_alist)
va_dcl

Allowable keywords:

GARG_NAME(char *)segment_name
default "generic seg"

GARG_PARENTGT_OBJECT parentseg
G_OPENOBJECT(i.e. open segment)
NULL (default)

GARG_COMPILEDTRUE
FALSE (default)

GARG_ANGLE(GT_ANGLE)rotation in degrees
default is 0

GARG_TRANSX(GT_COORD)x translation to add to all
data in the segment.
default is 0.

GARG_TRANSY(GT_COORD)y translation to add to all
data in the segment.
default is 0.

Gcsegment() creates a compiled segment graphics object. It is
the same as Gsegment() except that the default for
GARG_COMPILED is TRUE.

GT_OBJECT Gexecsegment(values)
struct garraysegment *values;

Takes as input an address of a garraysegment structure and the
creates the corresponding segment graphics object.

*Destroy

void Gdelete(segment);
GT_OBJECT segment;

*Inquire

void Ginqsegment(segment, va_alist)
GT_OBJECT segment;
Page 20

va_dcl

Takes the input segment graphics object and returns the values
requested. Valid 'GARG_' keywords are the same as those for
segment create.

*Modify

void Gmodsegment(segment, va_alist)
GT_OBJECT segment;
va_dcl

Takes the input segment graphics object and modifies the values
requested. Valid 'GARG_' keywords are the same as those for
segment create.

*Standard Object Operations

All operations are valid. Refer to the particular operation for
descriptions in the 'Standard Object Operations' section.

*Draw

Gdraw(segment)
GT_OBJECT segment;

Renders the graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

CHILD OBJECTS

Primitives, segments.

PARENT OBJECTS

Segments
Calls
Views

EXAMPLES

SEE ALSO

Primitives, Segments, Calls,

VIEW PGL OBJECTS VIEW

DEFINITION

A view is a graphics object that contains information that describe
the viewing parameters of a displayable object. It contains two user
Page 21

specified rectangles, one in world and one in viewport coordinate space.
This provides the mapping from an area in world space (where graphics
primitives exist) to a viewport (an area in a window). A graphics data
segment is associated with the view to indicate what data exists in the
view. A picture is created to actualize the view and make it visible in
the specified window on the specified device.

TYPE

GO_VIEW

ATTRIBUTES

GARG_HIDDEN

Specifies whether the view is visible or not.

OPERATIONS

*Create

GT_OBJECT Gview(va_alist)
va_dcl

Allowable keywords:

GARG_NAME(char *)view_name
default "generic view"

GARG_PARENTGT_OBJECT parentseg
G_OPENOBJECT(i.e. open segment)
NULL (default)

GARG_SEGMENT(GT_OBJECT)segment;
NULL (default)

GARG_VIEWPORT(GT_VCOORD)vxmin,
(GT_VCOORD)vymin,
(GT_VCOORD)vxmax,
(GT_VCOORD)vymax,

GARG_WORLD(GT_COORD)wxmin,
(GT_COORD)wymin,
(GT_COORD)wxmax,
(GT_COORD)wymax,

GARG_PROC(GT_FNPTR)eventproc
NULL (default)

GARG_EVENTMASK(GT_EVENTMASK)eventmask
G_DEFAULTEVENTMASK(default)

GARG_CONSUMEMASK (GT_EVENTMASK)consumemask
Page 22

G_DEFAULTCONSUMEMASK(default)

GT_OBJECT Gexecview(values)
struct garrayview *values;

Takes as input an address of a garrayview structure and the
creates the corresponding view graphics object.

*Destroy

void Gdelete(view);
GT_OBJECT view;

*Inquire

void Ginqview(view, va_alist)
GT_OBJECT view;
va_dcl

Takes the input view graphics object and returns the values
requested. Valid 'GARG_' keywords are the same as those for
view create.

*Modify

void Gmodview(view, va_alist)
GT_OBJECT view;
va_dcl

Takes the input view graphics object and modifies the values
requested. Valid 'GARG_' keywords are the same as those for
view create.

*Standard Object Operations

All operations are valid. Refer to the particular operation for
descriptions in the 'Standard Object Operations' section.

*Draw

Gdraw(view)
GT_OBJECT view;

Renders the graphics object using all the pictures that have
been associated with it, each determining the world to device
transform, the clipping bounds, and the window and device to
draw to.

CHILD OBJECTS

None.

PARENT OBJECTS
Page 23

None.

EXAMPLES

SEE ALSO

Segments, Pictures

WINDOW PGL OBJECTS WINDOW

DEFINITION

A window is a graphics object that represents an area on the video
display. This area is usually created and managed by the resident
window system/window manager. Which window system/manager is used is
determined by the device associated with the pictures that include
the window. It may or may not be bordered,
movable, resizable, iconifyable, etc. These parameters are determined
by the windows 'window manager style' (of type GT_WSTYLE).

TYPE

GO_WINDOW

ATTRIBUTES

GARG_HIDDEN

Specifies whether the window is visible or not.

OPERATIONS

*Create

GT_OBJECT Gwindow(va_alist)
va_dcl

Allowable keywords:

GARG_NAME(char *)window_name
"generic window name" (default)

GARG_SCREEN(GT_SCOORD)sxmin
(GT_SCOORD)symin
(GT_SCOORD)sxmax
(GT_SCOORD)symax

GARG_MAXNUMCOLORS (GT_ATT)numcolors
G_DEFAULT_MAXNUMCOLORS(default)
Page 24

GARG_WINDOWMANAGERSTYLE (GT_WSTYLE)wstyle
open window manager style (default)

GARG_PARENTGT_OBJECT parentwindow
G_OPENOBJECT(i.e. open segment)
NULL (default)

GT_OBJECT Gexecwindow(values)
struct garraywindow *values;

Takes as input an address of a garraywindow structure and the
creates the corresponding window graphics object.

*Destroy

void Gdelete(window);
GT_OBJECT window;

*Inquire

void Ginqwindow(window, va_alist)
GT_OBJECT window;
va_dcl

Takes the input window graphics object and returns the values
requested. Valid 'GARG_' keywords are the same as those for
window create.

*Modify

void Gmodwindow(window, va_alist)
GT_OBJECT window;
va_dcl

Takes the input window graphics object and modifies the values
requested. Valid 'GARG_' keywords are the same as those for
window create.

*Standard Object Operations

All operations are valid. Refer to the particular operation for
descriptions in the 'Standard Object Operations' section.

*Draw

Gdraw(window)
GT_OBJECT window;

Renders the graphics object using all the pictures that have
been associated with it, each determining the world to device
transform, the clipping bounds, and the data and device to
draw to.

CHILD OBJECTS
Page 25

Possible subwindows.

PARENT OBJECTS

A window if a subwindow.

EXAMPLES

SEE ALSO

Segments, Pictures, Wstyle

DEVICE PGL OBJECTS DEVICE

DEFINITION

A device is a graphics object that represents the interface to a
window and hardware system configuration.

TYPE

GO_DEVICE

ATTRIBUTES

There are no attributes used at this time.

OPERATIONS

*Create

GT_OBJECT Gdevice(va_alist)
va_dcl

Allowable keywords:The possible parameter values:

GARG_VIDEODRIVERTYPEint system video modes
user defined video type
G_DEFAULT_VIDEOMODE (default)

When the videomode changes there will
be the visible effect consisting of the
clearing of the window(s) and resizing
(where necessary) and repainting of
same.

GARG_VIDEODRIVERGT_DRIVER user_defined_video_driver
(defaults are supplied by system when a
system video hardware type is chosen
Page 26

with the GARG_VIDEODRIVERTYPE option).

GARG_MOUSEDRIVERTYPEintsystem mouse type
G_DEFAULT_MOUSE(default)

GARG_MOUSEDRIVER GT_DRIVER user_defined_mouse_driver
(default is supplied by system when a
system mouse hardware type is chosen
with the GARG_MOUSEDRIVERTYPE option).

GARG_KEYBOARDDRIVERTYPE intsystem keyboard type
G_DEFAULT_KEYBOARD(default)

GARG_KEYBOARDDRIVERGT_DRIVER user_defined_keyboard_driver
(default is supplied by system when a
system keyboard hardware type is chosen
with the GARG_KEYBOARDDRIVERTYPE option).

GARG_MOUSEENABLED intG_TRUE(default) or G_FALSE

GARG_VIDEOENABLED intG_TRUE(default) or G_FALSE

GARG_KEYBOARDENABLEDintG_TRUE(default) or G_FALSE

GARG_MOUSEBUTTONSENABLED intmask of valid mouse buttons
G_DEFAULT_MOUSEBUTTONSENABLED (default)

The following window manager and driver options are applied to
all windows SUBSEQUENTLY CREATED whenever picture graphic objects
are created on this, the given device.

GARG_WINDOWTYPEinttype of window driver system.
G_NATIVEWINDOWTYPE(default)
other system supplied options are:

G_PGLWINDOWTYPE

see the file "gappl.h". If the
windowtype is not a system supplied
type then the given value is stored
but otherwise ignored. Note: PGLWINDOWS
is a window system built in to PGL and
is the native window type on stock PCs
and can be a subwindowtype on any other
window system.

GARG_WINDOWDRIVER struct gwindowdriver * user_window_driver
(defaults are supplied by system when a
system window type is chosen with the
GARG_WINDOWTYPE option).

GARG_WINDOWMANAGERTYPEinttype of high level PGL window manager.
G_NATIVEWINDOWMANAGER(default)
Page 27

GARG_WINDOWMANAGERstruct gwsystem *wmanager

Sub windows can be different than their parent window. The following
apply to any SUBWINDOWS subsequently created during an instantiation
of any picture graphic objects on this given device.

GARG_SUBWINDOWTYPEinttype of window driver system.
G_NATIVEWINDOWTYPE(default)
other system supplied options are:

G_PGLWINDOWTYPE

see the file "gappl.h". If the
windowtype is not a system supplied
type then the given value is stored
but otherwise ignored.

GARG_SUBWINDOWDRIVER struct gwindowdriver * user_window_driver
(defaults are supplied by system when a
system window type is chosen with the
GARG_WINDOWTYPE option).

GARG_SUBWINDOWMANAGERTYPEinttype of high level PGL window
manager.

G_NATIVEWINDOWMANAGER(default)

GARG_SUBWINDOWMANAGERstruct gwsystem *wmanager

GARG_NAME(char *)device name
"generic window name" (default)

GT_OBJECT Gexecdevice(values)
struct garraydevice *values;

Takes as input an address of a garraydevice structure and the
creates the corresponding device graphics object.

*Destroy

void Gdelete(device);
GT_OBJECT device;

*Inquire

void Ginqdevice(device, va_alist)
GT_OBJECT device;
va_dcl

Takes the input device graphics object and returns the values
requested. Valid 'GARG_' keywords are the same as those for
device create.

*Modify
Page 28

void Gmoddevice(device, va_alist)
GT_OBJECT device;
va_dcl

Takes the input device graphics object and modifies the values
requested. Valid 'GARG_' keywords are the same as those for
device create.

*Standard Object Operations

All operations are valid. Refer to the particular operation for
descriptions in the 'Standard Object Operations' section.

*Draw

*** NOT IMPLEMENTED ***

Gdraw(device)
GT_OBJECT device;

Renders the graphics object using all the pictures that have
been associated with it, each determining the world to device
transform, the clipping bounds, and the data and device to
draw to.

CHILD OBJECTS

None.

PARENT OBJECTS

None.

EXAMPLES

BUGS

Very high level windowmanagers are not supported (i.e. the work is
all done internal to PGL and it won't take advantage of the power of
some of the modern window systems today).

SEE ALSO

Segments, Pictures, Drivers(low level interface).

PICTURE PGL OBJECTS
PICTURE

DEFINITION

A picture is the link between the video device and the graphics data the
Page 29

application has created. In a real sense only picture graphic objects
are seen by the user. This link consists of a segment graphic object
(with graphic primitive objects in it representing lines, circles,
etc.), a view graphic object(representing how the graphics data will
look), a window graphic object(representing the area on the screen
the data is drawn to as well as the system level window to draw into),
and a device graphic object(representing the actual hardware used for
output which may be video, RAM, plotters, etc.).

PURPOSE

The picture provides methods to control the conceptual 'viewing
pipeline', the link between a graphical action by the application and
the resultant graphical output. Thus multiple views(one set of data
viewed differently at different areas of the window), multiple windows
of the same view, and multiple devices for output.

TYPE

GO_PICTURE
GO_SYMBOLICPICTURE

ATTRIBUTES

GARG_HIDDEN

Specifies whether the picture is visible or not.

GARG_FILL

Specifies if and how the picture background is filled (if at
all).

OPERATIONS

*Create

GT_OBJECT Gpicture(view, window, device)
GT_OBJECT view;
GT_OBJECT window;
GT_OBJECT device;

A picture graphic object is created and it's handle is returned.
If the system managed window associated with the window
graphic object does not yet exist, it is created. If there is
not an open device, the default device is opened.

If G_WILDCARD is a parameter in place of any of the given
objects, then a symbolic picture graphic object is created.
This symbolic picture represents all pictures that exist,
whenever the symbolic picture is referenced, that have a view,
window, and device which match the symbolic picture's view,
window, and device.
For example, if all three parameters are G_WILDCARD, then the
Page 30

symbolic picture represents all pictures created. Therefore
at initialization, drawing the symbolic picture draws nothing,
and at any other time, it will draw everything created.

view

If view is equal to: 1. a 'view' graphic object

Then the given view will be linked with the
given window and given device.

2. G_OPENOBJECT

Then the currently open view will be linked
with the given window and given device.

3. (GT_OBJECT)G_WILDCARD

Then all view graphic objects will be linked
with the given window and given device.

window

If window is equal to: 1. a 'window' graphic object

Then the given window will be linked with the
given view and given device.

2. G_OPENOBJECT

Then the currently open window will be linked
with the given view and given device.

3. (GT_OBJECT)G_WILDCARD

Then all window graphic objects will be linked
with the given view and given device.

device

If device is equal to: 1. a 'device' graphic object

Then the given device will be linked with the
given window and given view.

2. G_OPENOBJECT

Then the currently open device will be linked
with the given window and given view. If there
is no open device, the default device will
be created and opened automatically.
Page 31

3. (GT_OBJECT)G_WILDCARD

Then all device graphic objects will be linked
with the given window and given view.

GT_OBJECT Gexecpicture(values)
struct garraypicture *values;

Takes as input an address of a garraypicture structure and the
creates the corresponding picture graphics object.

*Destroy

void Gdelete(picture);
GT_OBJECT picture;

*Inquire

void Ginqpicture(picture, va_alist)
GT_OBJECT picture;
va_dcl

Takes the input segment graphics object and returns the values
requested. Valid 'GARG_' keywords are:

GARG_VIEW

GARG_WINDOW

GARG_DEVICE

*Modify

There is no way, and no sense, to modifying a picture object.

*Standard Object Operations

All operations are valid. Refer to the particular operation for
descriptions in the 'Standard Object Operations' section.

*Draw

Gdraw(picture)
GT_OBJECT picture;

Renders the graphics object using the picture to determine the
world to device transform, the clipping bounds, and the window
and device to draw to, and view graphic data to draw.

*Traversal

GT_OBJECT Gfirstpicture(obj)
GT_OBJECT obj;
Page 32

Returns the first picture in an internal list associated
with the given object. NULL is returned if there is no
such picture. So that if the graphic object 'obj' is a:

VIEW The picture which is drawn first when
the view is drawn is returned.

WINDOW The picture which is drawn first when
the window is drawn is returned.

DEVICE The picture which is drawn first when
the device is drawn is returned.

GT_OBJECT Glastpicture(obj)
GT_OBJECT obj;

Returns the last picture in an internal list associated
with the given object. Similar to Gfirstpicture, this
is the picture drawn last when the given object 'obj'
is drawn. NULL is returned if there is no such picture.

GT_OBJECT Gnextpicture(obj, picture)
GT_OBJECT obj;
GT_OBJECT picture;

Returns the next picture following the given picture
in an internal list associated with the given object
'obj'. NULL is returned if there is no such picture.

GT_OBJECT Gprevpicture(obj, picture)
GT_OBJECT obj;
GT_OBJECT picture;

Returns the previous picture preceding the given
picture in an internal list associated with the given
object 'obj'. NULL is returned if there is no such
picture.

int Gexcisepicturefromobject(picture, object)
GT_OBJECT picture;
GT_OBJECT object;

Removes the given picture from the list of pictures
associated with the given object. The object must
be the view, window or device object which is a
component of the given picture. The next time the
given object is drawn, the given picture will not be
drawn. Non-zero is returned if the given picture is not
associated with the given object.

int Gappendpicturetoobject(picture, object)
GT_OBJECT picture;
GT_OBJECT object;
Page 33

Appends the given picture to the end of the list
of pictures associated with the given object. The object
must be the view, window or device object which is a
component of the given picture. The next time the
given object is drawn, the given picture will be drawn
last. Note that a Gexcisepicturefromobject combined with
a Gappendpicturetoobject is effectively a picture
'pop-up'. Non-zero is returned if the object is of
an incorrect type.

int Gprependpicturetoobject(picture, object)
GT_OBJECT picture;
GT_OBJECT object;

Prepends the given picture to the beginning of the list
of pictures associated with the given object. The object
must be the view, window or device object which is a
component of the given picture. The next time the
given object is drawn, the given picture will be drawn
first. Note that a Gexcisepicturefromobject combined
with a Gprependpicturetoobject is effectively a picture
'pushunder'. Non-zero is returned if the object is of
an incorrect type.

void Gpopup(picture)
GT_OBJECT picture;

'Pop-up' the system window associated with the given
picture object. This makes the window the top window
and completely unobscured.

void Gpushunder(picture)
GT_OBJECT picture;

'Pushunder' the system window associated with the given
picture object. This makes the window the bottom window
and possibly overlapped by other windows.

CHILD OBJECTS

None.

PARENT OBJECTS

None.

EXAMPLES

SEE ALSO

View, Window, Device.
Page 34

PRIMITIVES

A primitive is a graphics object that cannot contain any graphics
objects within it. It is a leaf of the graphics data structure and usually
represents a visual entity.

I. Creation

When primitive graphics objects are created, they are put in the
currently open segment inheriting the attributes found in the currently
open context. A handle of the created object is returned to the caller.
The primitive object is not checked to determine wether it (and with the
attributes in it's graphical context) will make the primitive exceed the
bounds of world space. Coordinate points are always specified in window
world coordinates and are of type GT_COORD.

Compiled primitive graphics objects are slightly different in that
they allocate a little more memory to have space to save a copy of the
device coordinates of the primitive at the last screen/viewport/world
transformation model it was last drawn in. This saves time when it is
drawn again by the CPU not having to spend the time to recalculate the
transformations.

primitives usually therefore usually exist inside 'segments' which
are provided to allow various tree structures to be maintained.

GT_OBJECT Garc(xc, yc, a, b, start, end)
GT_OBJECT Gcarc(xc, yc, a, b, start, end)
GT_OBJECT Gcall(seg, tx, ty, angle, scale)
GT_OBJECT Gccall(seg, tx, ty, angle, scale)
GT_OBJECT Gellipse(xc, yc, a, b)
GT_OBJECT Gcellipse(xc, yc, a, b)
GT_OBJECT Gline(x1, y1, x2, y2)
GT_OBJECT Gcline(x1, y1, x2, y2)
GT_OBJECT Gpline(array, number)
GT_OBJECT Gcpline(array, number)
GT_OBJECT Gpolygon(linelist, arclist)
GT_OBJECT Gcpolygon(linelist, arclist)
GT_OBJECT Grect(x1, y1, x2, y2)
GT_OBJECT Gcrect(x1, y1, x2, y2)
GT_OBJECT Gtext(x, y, string)
GT_OBJECT Gctext(x, y, string)

II. Inquire

There are functions provided to provide information about a
graphics object to an application. These are called inquire functions.
Some inquire the parameters of any type of object and some inquire
only about their specific type of object. Some general inquire functions
such as Ggetarray and Ggetextrema are discussed elsewhere. Specific inquire
functions, one for each graphical object, are the following: (note: replace
[objectname] with an objects generic name like 'line' or 'rectangle', etc.)

Ginq[objectname](obj, [addresses of]parameter list as it appears
for create of the object)
Page 35

GT_OBJECT obj;
[pointers to] parameter list as it appears for create of the object;

i.e. for line the function is defined as:

void Ginqline(obj, x1, y1, x2, y2)
GT_OBJECT obj;
GT_COORD *x1, *y1, *x2, *y2;

int Ggetarray[objectname](obj, array)
GT_OBJECT obj;
struct garray[objectname] *array;

GT_OBJECT obj INPUT: handle of a the graphics object.

struct garray[objectname] *array

 INPUT: pointer to a garray[objectname]
 structure.
 RETURN: object values are assigned to
 the corresponding structure entries.

Returns size of the array in bytes.

ARC PGL PRIMITIVES ARC

DEFINITION

An arc is a section of an ellipse. It is defined by the semi-major
and semi-minor axis of the ellipse (commonly denoted by 'a' and 'b'
respectively), the center of the ellipse (xc, yc), and the start and
end angle of the section of ellipse constituting the arc. Angles,
measured in degrees, extend counterclockwise from the center of the
ellipse where 0 degrees coincides with the right (EAST) direction.

TYPE

GO_ARC
GO_CARC

ATTRIBUTES

GARG_LWIDTH

Specifies the arc's width in world coordinates. The 'fat arc'
actually becomes the original arc with linewidth/2 lines on
each side of it.
Page 36

GARG_COLOR

Specifies the arc's color (the arc's edge color when
there is a linewidth).

GARG_FILL

Specifies how arcs and fat arcs are filled (if at all). Filled
arcs which are not fat (i.e. linewidth is zero) are triangular
'pie slices' and if the fill color (GARG_FILLCOLOR) is
G_TRANSPARENT the arcs are 'pie slices' with only the edges
drawn.

GARG_WRITEMODE

Specifies how the arcs pixels are written to the video buffer.

GARG_HIDDEN

Specifies whether the arc is visible or not.

OPERATIONS

*Create

GT_OBJECT Garc(xc, yc, a, b, start, end)
GT_COORD xc, yc, a, b;
GT_ANGLE start, end;

GT_OBJECT Gcarc(xc, yc, a, b, start, end)
GT_COORD xc, yc, a, b;
GT_ANGLE start, end;

Creates a arc primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.
Gcarc() creates a compiled arc primitive graphics object.

GT_OBJECT Gexecarc(values)
struct garrayarc *values;

GT_OBJECT Gexeccarc(values)
struct garrayarc *values;

Takes as input an address of a garrayarc structure and the
creates the corresponding arc primitive graphics object.

*Destroy

void Gdelete(arc);
GT_OBJECT arc;
Page 37

*Inquire

void Ginqarc(arcobj, xc, yc, a, b, start, end)
GT_OBJECT arcobj;
GT_COORD *xc, *yc, *a, *b;/* RETURNED */
GT_ANGLE *start, *end;/* RETURNED */

int Ggetarrayarc(arcobj, array)
GT_OBJECT arcobj;
struct garrayarc *array;/* RETURNED */

The size of the array buffer (i.e. struct garrayarc)
is returned.

Takes the input arc primitive graphics object and fills out the
array buffer with values which are equivalent to the parameters
which could be passed to Garc() to create a copy
of the object. Also, the array returned from Ggetarrayarc can be
passed to Gexecarc or Gexeccarc to create the a copy of the
object. There is no attempt to verify that the input object is
really a arc object.

*Modify

void Gmodarc(obj, xc, yc, a, b, start, end)
GT_OBJECT obj;
GT_COORD xc, yc, a, b;
GT_ANGLEstart, end;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the arcs's center, size, and
angles to the new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(arc)
GT_OBJECT arc;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawarc(ctx, xc, yc, a, b, start, end)
GT_CTX ctx;
GT_COORD xc, yc, a, b;
GT_ANGLE start, end;

Similar to the create function, Garc, but immediately renders
the arc, does not create a graphics object, and uses the
Page 38

supplied context 'ctx' rather than the currently open context.
The primitive is drawn using the open picture's world/viewport
transformations and clipping boundaries.

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

Primitives, Context, Segments, Calls,

CALLS PGL PRIMITIVES CALLS

DEFINITION

The call primitive is a combination translation, rotation and scale
operation applied to a segment or primitive. Drawing the call primitive
causes the segment or primitive to be drawn (after the translation and/
or rotation and/or scale is applied to it). It is usually used when
there is an object that is to be displayed at multiple locations and
orientations. In this case the top level segment contains multiple
call primitives pointing to this popular segment.

TYPE

GO_CALL
GO_CCALL

ATTRIBUTES

GARG_HIDDEN

Specifies whether the segment is visible or not.

OPERATIONS

*Create
Page 39

GT_OBJECT Gcall(seg, tx, ty, angle, scale)
GT_OBJECT seg;
GT_COORD tx, ty;
GT_ANGLE angle;
GT_SCALE scale;

GT_OBJECT Gccall(seg, tx, ty, angle, scale)
GT_OBJECT seg;
GT_COORD tx, ty;
GT_ANGLE angle;
GT_SCALE scale;

Creates a call primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.
Gccall() creates a compiled call primitive graphics object.

GT_OBJECT Gexeccall(values)
struct garraycall *values;

GT_OBJECT Gexecccall(values)
struct garraycall *values;

Takes as input an address of a garraycall structure and the
creates the corresponding call primitive graphics object.

*Destroy

void Gdelete(call);
GT_OBJECT call;

*Inquire

void Ginqcall(obj, seg, tx, ty, angle, scale)
GT_OBJECT obj;
GT_OBJECT *seg; /* RETURNED */
GT_COORD *tx, *ty;/* RETURNED */
GT_ANGLE *angle; /* RETURNED */
GT_SCALE *scale; /* RETURNED */

int Ggetarraycall(obj, array)
GT_OBJECT obj;
struct garraycall *array;/* RETURNED */

The size of the array buffer (i.e. struct garraycall)
is returned.

Takes the input call primitive graphics object and returns
the corresponding values which are equivalent to the parameters
which could be passed to Gcall() to create a copy
of the object. Also, the array returned from Ggetarraycall can be
passed to Gexeccall or Gexecccall to create the a copy of
the object. There is no attempt to verify that the input object
Page 40

is really a call object.

*Modify

void Gmodcall(icall, ...)
GT_OBJECT icall;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters.

Valid keywords:

 GARG_SEGMENT

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(call)
GT_OBJECT call;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

CHILD OBJECTS

Segments and Primitives.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

Scale is not implemented at this time.
Gmodcall takes modifys only the segment, Gtranslate and Grotate must
be used to modify its other values.

SEE ALSO

Primitives, Segments,

ELLIPSE PGL PRIMITIVES
ELLIPSE
Page 41

DEFINITION

An ellipse is a standard conic section. It is defined by the semi-major
and semi-minor axis of the ellipse (commonly denoted by 'a' and 'b'
respectively), the center of the ellipse (xc, yc). Only ellipses with
orthogonal axis are supported at this time.

TYPE

GO_ELLIPSE
GO_CELLIPSE

ATTRIBUTES

GARG_LWIDTH

Specifies the ellipse's width in world coordinates. The 'fat
ellipse' actually becomes the original ellipse with linewidth/2
lines on each side of it.

GARG_COLOR

Specifies the ellipse's color (the ellipse's edge color when
there is a linewidth).

GARG_FILL

Specifies how ellipses and fat ellipses are filled (if at all).

GARG_WRITEMODE

Specifies how the ellipses pixels are written to the video
buffer.

GARG_HIDDEN

Specifies whether the ellipse is visible or not.

OPERATIONS

*Create

GT_OBJECT Gellipse(xc, yc, a, b)
GT_COORD xc, yc, a, b;

GT_OBJECT Gcellipse(xc, yc, a, b)
GT_COORD xc, yc, a, b;

Creates a ellipse primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
Page 42

returned to the caller.
Gcellipse() creates a compiled ellipse primitive graphics object.

GT_OBJECT Gexecellipse(values)
struct garrayellipse *values;

GT_OBJECT Gexeccellipse(values)
struct garrayellipse *values;

Takes as input an address of a garrayellipse structure and the
creates the corresponding ellipse primitive graphics object.

*Destroy

void Gdelete(ellipse);
GT_OBJECT ellipse;

*Inquire

void Ginqellipse(ellipseobj, xc, yc, a, b)
GT_OBJECT ellipseobj;
GT_COORD *xc, *yc, *a, *b;/* RETURNED */

int Ggetarrayellipse(ellipseobj, array)
GT_OBJECT ellipseobj;
struct garrayellipse *array;/* RETURNED */

The size of the array buffer (i.e. struct garrayellipse)
is returned.

Takes the input ellipse primitive graphics object and returns the
corresponding values which are equivalent to the parameters
which could be passed to Gellipse() to create a copy
of the object. Also, the array returned from Ggetarrayellipse can

be
passed to Gexecellipse or Gexeccellipse to create the a copy of

the
object. There is no attempt to verify that the input object is
really a ellipse object.

*Modify

void Gmodellipse(obj, xc, yc, a, b)
GT_OBJECT obj;
GT_COORD xc, yc, a, b;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the ellipse's center, and size
to the new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.
Page 43

*Draw

void Gdraw(ellipse)
GT_OBJECT ellipse;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawellipse(ctx, xc, yc, a, b)
GT_CTX ctx;
GT_COORD xc, yc, a, b;

Similar to the create function, Gellipse, but immediately renders
the ellipse, does not create a graphics object, and uses the
supplied context 'ctx' rather than the currently open context.
The primitive is drawn using the open picture's world/viewport
transformations and clipping boundaries.

void (*Gr_ellipse)(mask, xc, yc, a, b)
short mask;
GT_DCOORD xc, yc, a, b;

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

Primitives, Context, Segments, Calls,

LINE PGL PRIMITIVES LINE

DEFINITION

A line is a visual connection between two points. It is defined by
a start and end coordinate point. Point one (x1, y1) and point two
(x2, y2) are in world coordinates.

TYPE
Page 44

GO_LINE
GO_CLINE

ATTRIBUTES

GARG_LWIDTH

Specifies the line's width in world coordinates. The 'wide line'
actually becomes the original line with linewidth/2 lines on
each side of it. This is one way to generate a orthogonal
rectangle rotated at an angle.

GARG_COLOR

Specifies the line's color (the line's edge color when
there is a linewidth).

GARG_FILL

Specifies how wide lines are filled (if at all).

GARG_WRITEMODE

Specifies how the lines pixels are written to the video buffer.

GARG_HIDDEN

Specifies whether the line is visible or not.

OPERATIONS

*Create

GT_OBJECT Gline(x1, y1, x2, y2)
GT_COORD x1, y1, x2, y2;

GT_OBJECT Gcline(x1, y1, x2, y2)
GT_COORD x1, y1, x2, y2;

Creates a line primitive graphics object in the currently open
segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.
Gcline() creates a compiled line primitive graphics object.

GT_OBJECT Gexecline(values)
struct garrayline *values;

GT_OBJECT Gexeccline(values)
struct garrayline *values;

Takes as input an address of a garrayline structure and the
creates the corresponding line primitive graphics object.
Page 45

*Destroy

void Gdelete(line);
GT_OBJECT line;

*Inquire

void Ginqline(lineobj, x1, y1, x2, y2)
GT_OBJECT lineobj;
GT_COORD *x1, *y1, *x2, *y2;/* RETURNED */

int Ggetarrayline(lineobj, array)
GT_OBJECT lineobj;
struct garrayline *array;/* RETURNED */

The size of the array buffer (i.e. struct garrayline)
is returned.

Takes the input line primitive graphics object and returns the
values of the world coordinate start and end points. These
values are equivalent to the parameters passed to Gline()
which will then create a copy of the object. Also, the array
can be passed to Gexecline or Gexeccline to create the a copy
of the object. There is no attempt to verify that the input
object is really a line object.

*Modify

void Gmodline(obj, x1, y1, x2, y2)
GT_OBJECT obj;
GT_COORD x1, y1, x2, y2;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the line's endpoints to the
new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(line)
GT_OBJECT line;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawline(ctx, x1, y1, x2, y2)
GT_CTX ctx;
GT_COORD x1, y1, x2, y2;
Page 46

Takes the input coordinates as representing the endpoints of a
line and renders the line using the supplied context ctx. The
line is drawn using the open picture's world/viewport
transformations and clipping boundaries.

void (*Gr_aline)(x1, y1, x2, y2)
GT_DCOORD x1, y1, x2, y2;

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

Primitives, Context, Segments, Calls,

POLYGONS PGL PRIMITIVES POLYGONS

DEFINITION

The polygon primitive is used to display a group of polylines and arcs.
It is defined by a pointer to a list of polylines and a pointer to a
list of arcs, either of which may be NULL.
The 'linelist' parameter points to a list of polylines of form:

GT_COORD number_of_lines;
GT_COORD pt1_x, pt1_y;
GT_COORD pt2_x, pt2_y;
GT_COORD pt3_x, pt3_y;
...
GT_COORD number_of_lines_polyline_#2;
GT_COORD pt1_x, pt1_y;
GT_COORD pt2_x, pt2_y;
GT_COORD pt3_x, pt3_y;
...
...
GT_COORD 0;/* end of polylines */
Page 47

Similarly, the 'arclist' parameter points to a list of arc data of
form:

GT_COORD number_of_arcs;
GT_COORD xc, yc, a, b, start, end;/* arc #1 */
GT_COORD xc, yc, a, b, start, end;/* arc #2 */
...

TYPE

GO_POLYGON
GO_CPOLYGON

ATTRIBUTES

GARG_LWIDTH

Specifies the lines' and arcs' width in world coordinates
and behaves exactly like individual lines and arcs.

GARG_COLOR

Specifies the lines' and arcs' color (the lines' and arcs'
edge color when there is a linewidth).

GARG_FILL

Specifies how fat lines and arcs are filled (if at all). Also
used to fill horizontal slices of the polygon formed by the
polylines and arcs (whether it is closed or not) when linewidth
is zero. This can be used to create areas with unfilled 'holes'
in them.

GARG_WRITEMODE

Specifies how the lines' and arcs' pixels are written to the
video buffer.

GARG_HIDDEN

Specifies whether the polygon is visible or not.

OPERATIONS

*Create

GT_OBJECT Gpolygon(linelist, arclist)
GT_COORD *linelist;
GT_COORD *arclist;

GT_OBJECT Gcpolygon(linelist, arclist)
GT_COORD *linelist;
Page 48

GT_COORD *arclist;

Creates a polygon primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.
Gcpolygon() creates a compiled polygon primitive graphics object.

GT_OBJECT Gexecpolygon(values)
struct garraypolygon *values;

GT_OBJECT Gexeccpolygon(values)
struct garraypolygon *values;

Takes as input an address of a garraypolygon structure and the
creates the corresponding polygon primitive graphics object.

*Destroy

void Gdelete(polygon);
GT_OBJECT polygon;

*Inquire

void Ginqpolygon(polygonobj, linelist, arclist)
GT_OBJECT polygonobj;
GT_COORD **linelist;/* RETURNED */
GT_COORD **arclist;/* RETURNED */

int Ggetarraypolygon(polygonobj, array)
GT_OBJECT polygonobj;
struct garraypolygon *array;/* RETURNED */

The size of the array buffer (i.e. struct garraypolygon)
is returned.

Takes the input polygon primitive graphics object and returns
the corresponding values which are equivalent to the parameters
which could be passed to Gpolygon() to create a copy
of the object. Also, the array returned from Ggetarraypolygon can

be
passed to Gexecpolygon or Gexeccpolygon to create the a copy of
the object. There is no attempt to verify that the input object
is really a polygon object.

*Modify

void Gmodpolygon(obj, linelist, arclist)
GT_OBJECT obj;
GT_COORD *linelist;
GT_COORD *arclist;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
Page 49

same parameters (i.e. changes the polygons's list of polylines
and arcs to the new lists).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(polygon)
GT_OBJECT polygon;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawpolygon(ctx, linelist, arclist)
GT_CTX ctx;
GT_COORD *linelist;
GT_COORD *arclist;

Similar to the create function, Gpolygon, but immediately
renders the polygon, does not create a graphics object, and
uses the supplied context 'ctx' rather than the currently open
context. The primitive is drawn using the open picture's
world/viewport transformations and clipping boundaries.

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

Gmodpolygon is NOT IMPLEMENTED.

SEE ALSO

Primitives, Context, Segments, Calls,

POLYLINES PGL PRIMITIVES POLYLINES

DEFINITION
Page 50

The polyline primitive is used to display lines which are connected
end-to-end. It is defined by a pointer to a list of end points and by
the number of lines defined by the list.

TYPE

GO_PLINE
GO_CPLINE

ATTRIBUTES

GARG_LWIDTH

Specifies the lines' width in world coordinates. All the 'fat
lines' actually become the original lines with linewidth/2
lines on each side of it.

GARG_COLOR

Specifies the lines' color (the lines' edge color when
there is a linewidth).

GARG_FILL

Specifies how fat lines are filled (if at all). Also used
to fill horizontal slices of the polygon formed by the
polylines (whether it is closed or not) when linewidth is
zero.

GARG_WRITEMODE

Specifies how the lines pixels are written to the video buffer.

GARG_HIDDEN

Specifies whether the polyline is visible or not.

OPERATIONS

*Create

GT_OBJECT Gpline(ptlist, number_of_line_segments)
GT_COORD *ptlist;
int number_of_line_segments;

GT_OBJECT Gcpline(ptlist, number_of_line_segments)
GT_COORD *ptlist;
int number_of_line_segments;

Creates a pline primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
Page 51

returned to the caller.
Gcpline() creates a compiled pline primitive graphics object.

GT_OBJECT Gexecpline(values)
struct garraypline *values;

GT_OBJECT Gexeccpline(values)
struct garraypline *values;

Takes as input an address of a garraypline structure and the
creates the corresponding pline primitive graphics object.

*Destroy

void Gdelete(pline);
GT_OBJECT pline;

*Inquire

void Ginqpline(plineobj, ptlist, number_of_line_segments)
GT_OBJECT plineobj;
GT_COORD **ptlist;/* RETURNED */
int *number_of_line_segments;/* RETURNED */

int Ggetarraypline(plineobj, array)
GT_OBJECT plineobj;
struct garraypline *array;/* RETURNED */

The size of the array buffer (i.e. struct garraypline)
is returned.

Takes the input pline primitive graphics object and returns the
corresponding values which are equivalent to the parameters
which could be passed to Gpline() to create a copy
of the object. Also, the array returned from Ggetarraypline can be
passed to Gexecpline or Gexeccpline to create the a copy of the
object. There is no attempt to verify that the input object is
really a pline object.

*Modify

void Gmodpline(obj, coords, number)
GT_OBJECT obj;
GT_COORD *coords;
int number;/* number of line segments */

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the polylines's list of points
to the new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.
Page 52

*Draw

void Gdraw(pline)
GT_OBJECT pline;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawpline(ctx, ptlist, number_of_line_segments)
GT_CTX ctx;
GT_COORD *ptlist;
int number_of_line_segments;

Similar to the create function, Gpline, but immediately renders
the pline, does not create a graphics object, and uses the
supplied context 'ctx' rather than the currently open context.
The primitive is drawn using the open picture's world/viewport
transformations and clipping boundaries.

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

For groups of disjoint lines see polygons.
Primitives, Context, Segments, Calls,

RECTANGLE PGL PRIMITIVES RECTANGLE

DEFINITION

A rectangle is a group of four orthogonal lines. Rectangles are defined
by the coordinate of the lower left hand corner and the coordinate of
the upper right hand corner.

TYPE
Page 53

GO_RECT
GO_CRECT

ATTRIBUTES

GARG_COLOR

Specifies the rectangle's edge color.

GARG_FILL

Specifies how the rectangle is filled (if at all).

GARG_WRITEMODE

Specifies how the rectangles pixels are written to the video
buffer.

GARG_HIDDEN

Specifies whether the rectangle is visible or not.

OPERATIONS

*Create

GT_OBJECT Grect(x1, y1, x2, y2)
GT_COORD x1, y1, x2, y2;

GT_OBJECT Gcrect(x1, y1, x2, y2)
GT_COORD x1, y1, x2, y2;

Creates a rectangle primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. Point one specifies the lower left hand
corner and point two specifies the upper right hand corner. The
points are in world coordinates. A handle of the created object
is returned to the caller.
Gcrectangle() creates a compiled rectangle primitive graphics
object.

GT_OBJECT Gexecrect(values)
struct garrayrect *values;

GT_OBJECT Gexeccrect(values)
struct garrayrect *values;

Takes as input an address of a garrayrect structure and the
creates the corresponding rectangle primitive graphics object.

*Destroy
Page 54

void Gdelete(rectangle);
GT_OBJECT rectangle;

*Inquire

void Ginqrect(rectangleobj, x1, y1, x2, y2)
GT_OBJECT rectangle;
GT_COORD *x1, *y1, *x2, *y2;/* RETURNED */

int Ggetarrayrect(rectangleobj, array)
GT_OBJECT rectangle;
struct garrayrect *array;/* RETURNED */

The size of the array buffer (i.e. struct garrayrect)
is returned.

Takes the input rectangle primitive graphics object and returns
the values of the world coordinate start and end points. These
values are equivalent to the parameters passed to Grect()
which will then create a copy of the object. Also, the array
can be passed to Gexecrect or Gexeccrect to create the a copy
of the object. There is no attempt to verify that the input
object is really a rect object.

*Modify

void Gmodrect(obj, x1, y1, x2, y2)
GT_OBJECT obj;
GT_COORD x1, y1, x2, y2;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the rectangles's lower-left-hand
and upper-right-hand corners to the new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(rectangle)
GT_OBJECT rectangle;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawrect(ctx, x1, y1, x2, y2)
GT_CTX ctx;
GT_COORD x1, y1, x2, y2;

Takes the input coordinates as representing the lower left and
Page 55

upper right corners of a rectangle and renders it using the
supplied context ctx. The primitive is drawn using the open
picture's world/viewport transformations and clipping boundaries.

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

Primitives, Context, Segments, Calls,

TEXT PGL PRIMITIVES TEXT

DEFINITION

The text primitive is used to display alphanumeric characters. It is
defined by an ASCII text string and the coordinate of the lower left
hand corner of the first character. Only stroke font characters may
be rotated at this time.

TYPE

GO_TEXT
GO_CTEXT

ATTRIBUTES

GARG_THEIGHT

Specifies the height of the characters in world coordinates.

GARG_TWIDTH

Specifies the width of each character in world coordinates.

GARG_TSPACING

Specifies the spacing between the characters in world coordinates.
Page 56

GARG_TFONT

Specifies which font is used when the text string is rendered.
The default is font 0 which is a resident fixed size (8~14
pixels high by 8 pixels wide) bitmapped font.

GARG_COLOR

Specifies the text color.

GARG_WRITEMODE

Specifies how the text string pixels are written to the video
buffer.

GARG_HIDDEN

Specifies whether the text is visible or not.

OPERATIONS

*Create

GT_OBJECT Gtext(x, y, string)
GT_COORD x, y;
char *string;

GT_OBJECT Gctext(x, y, string)
GT_COORD x, y;
char *string;

Creates a text primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.
Gctext() creates a compiled text primitive graphics object.

GT_OBJECT Gexectext(values)
struct garraytext *values;

GT_OBJECT Gexecctext(values)
struct garraytext *values;

Takes as input an address of a garraytext structure and the
creates the corresponding text primitive graphics object.

*Destroy

void Gdelete(text);
GT_OBJECT text;

*Inquire
Page 57

void Ginqtext(textobj, x, y, str)
GT_OBJECT textobj;
GT_COORD *x, *y; /* RETURNED */
char **str; /* RETURNED */

int Ggetarraytext(textobj, array)
GT_OBJECT textobj;
struct garraytext *array;/* RETURNED */

The size of the array buffer (i.e. struct garraytext)
is returned.

Takes the input text primitive graphics object and returns the
corresponding values which are equivalent to the parameters
which could be passed to Gtext() to create a copy
of the object. Also, the array returned from Ggetarraytext can
be passed to Gexectext or Gexecctext to create the a copy of the
object. There is no attempt to verify that the input object is
really a text object.

*Modify

void Gmodtext(obj, x, y, str)
GT_OBJECT obj;
GT_COORD x, y;
char *str;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the text's position and string
to the new values).

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Draw

void Gdraw(text)
GT_OBJECT text;

Renders the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawtext(ctx, x, y, string)
GT_CTX ctx;
GT_COORD x, y;
char *string;

Similar to the create function, Gtext, but immediately renders
the text, does not create a graphics object, and uses the
supplied context 'ctx' rather than the currently open context.
The primitive is drawn using the open picture's world/viewport
Page 58

transformations and clipping boundaries.

void (*Gr_putchr)(character, x, y)
char character;
GT_DCOORD x, y;

CHILD OBJECTS

None.

PARENT OBJECTS

Segments
Calls

EXAMPLES

BUGS

SEE ALSO

Primitives, Context, Segments, Calls,

USEROBJ PGL PRIMITIVES
USEROBJ

DEFINITION

The userobj primitive is used by applications who want to add their
own graphical objects. It is defined by an address of the objects
private data and by the address of an array of pointers to functions
which are standard for all PGL graphic objects. These functions are
call on to provide the functionality common to all graphic objects.

TYPE

GO_USEROBJ

ATTRIBUTES

GARG_HIDDEN

Specifies whether the userobj is visible or not.

All other attributes are available to the userobj's functions and
it is up to these functions as to how they interpret each function.

OPERATIONS
Page 59

All 'Standard Object Operations' are valid. Refer to the
particular operation for descriptions in the 'Standard Object
Operations' section.

*Create

GT_OBJECT Guserobj(data, funcs)
char *data;
struct gmbrfuncs *funcs;

Creates a userobj primitive graphics object in the currently
open segment. The primitive inherits the attributes found in the
currently open context. A handle of the created object is
returned to the caller.

The struct 'gmbrfuncs' is a structure of pointers to routines
which handle the various duties an object in PGL is requested
to perform (i.e. draw itself, delete itself, etc...). These
pointers are set to NULL when a gmbrfuncs structure is created
and it is up to the application replace any of these pointers
with the addresses of functions which will perform the jobs
the application wants the userobj to do. In C++ parlance,
this is an abstract class and the application overrides any
member functions it needs in order to define the userobj
functionality.

struct gmbrfuncs *Gmbrfuncs(subtype)
GT_TYPE subtype;

Creates a struct gmbrfuncs array.

void Gsetmemfuncsforsubtype(mf, subtype)
struct gmbrfuncs *mf;
GT_TYPE subtype;

Registers a struct gmbrfuncs array as the methods
for objects of type GO_USEROBJ and given subtype.

struct gmbrfuncs * Ggetmemfuncsforsubtype(subtype)
GT_TYPE subtype;

Inquires what the methods are for objects of type
GO_USEROBJ and the given subtype.

void Gdeletememfuncs(mf)
struct gmbrfuncs *mf;

Delete the given struct gmbrfuncs.

GT_TYPE Ggenuniquesubtype()

Return a subtype that has not yet been used.

GT_TYPE Ggetsubtypeuserobj(obj)
Page 60

struct guserobj *obj;

Return the subtype of a user object (invokes the
getsubtype function assigned to the userobj, if
any).

GT_OBJECT Gexecuserobj(values)
struct guserobjarray *values;

Takes as input an address of a guserobjarray structure and if
the application has overridden this funcion, calls the 'Gexec'
funtion of the userobj with 'values' as a parameter.

*Destroy

void Gdelete(userobj);
GT_OBJECT userobj;

Invokes the delete method assigned to the userobj, if any, then
deletes the userobj.

*Inquire

void Ginquserobj(obj, data, funcs)
GT_OBJECT obj;
char **data; /* RETURNED */
struct gmbrfuncs **funcs;/* RETURNED */

Takes the input userobj primitive graphics object and returns
the corresponding values which are equivalent to the parameters
which could be passed to Guserobj() to create a copy
of the object. Also, the array returned from Ggetarraytext can
be passed to Gexectext or Gexecctext to create the a copy of the
object. There is no attempt to verify that the input object is
really a userobj object.

*Modify

void Gmoduserobj(obj, data, funcs)
GT_OBJECT obj;
char *data;
struct gmbrfuncs *funcs;

Modifies the given primitive graphics object with the given
parameters to be equivalent to an object created with those
same parameters (i.e. changes the userobjs's data and methods
to the new values).

void Goverridememberfunction(objtype, functionid, newfnaddr)
GT_TYPE objtype;
GT_TYPE functionid;
GT_FNPTR newfnaddr;

For userobjects of the given subtype, replace the standard
Page 61

member function with the given one. Function ids defined
at this time are:

GF_WRITEC
GF_GETOBJECTDESCRIPTION

*Draw

void Gdraw(userobj)
GT_OBJECT userobj;

Invokes the draw function assigned to the userobj, if any,
to render the primitive graphics object using the current
open picture to determine the world to device transform,
the clipping bounds, and the window and device to draw to.

void Gdrawuserobj(ctx, data, funcs)
GT_CTX ctx;
char *data;
struct gmbrfuncs *funcs;

Similar to the create function, Guserobj, but immediately
renders the userobj, does not create a graphics object, and
uses the supplied context 'ctx' rather than the currently open
context. The primitive is drawn using the open picture's
world/viewport transformations and clipping boundaries. Again,
this function does nothing unless a draw function has been
assigned the object.

void Gundrawuserobj(obj)
struct guserobj *obj;

Invokes the undraw function assigned to the userobj, if any.

void Grecalcextremauserobj(obj)
struct guserobj *obj;

Called by the application's userobj functions to inform
PGL that the userobj extrema has changed and that any
extrema kept internally by PGL must now be updated (by
a call to the function assigned to be the userobject's
getextrema function.

CHILD OBJECTS

None.

PARENT OBJECTS

Segments

EXAMPLES
Page 62

BUGS

SEE ALSO

Primitives, Context, Segments, Ginqdraw, Gmoddraw, Gmodtransform,
Ginqtransform.

 PGL OPERATIONS

Gtranslate(obj, dx, dy) position the object at a distance from where it was.

Gposition(obj, x, y) position an objects's reference point.

Grotate(obj, angle) rotates an object (currently only segments and instances).

Gscale(obj, newxdim, oldxdim, newydim, oldydim) scale the size of the object.

Gresize(obj, xext, yext) set the size of the object.

Gdraw(obj) draw object (segments and primitives are transformed according

Ghide(obj, flag) hide/unhide object.

Gsetclip(win, wxmin, wymin, wxmax, wymax) set clip bounds for subsequent
draws.

Gunsetclip() restore clip bounds to open windows viewport.

Gsetdeviceclip(dxmin, dymin, dxmax, dymax) set clip bounds for subsequent
draws.

Gunsetdeviceclip() restore clip bounds to open windows viewport.

Ggetextrema(obj, bounds) returns dimensional extrema of an object.

G_TYPE Ggettype(obj) inquire type of an object.

Gopen(obj) makes obj the currently open object (screen, window, segment).

Gclose(obj) does nothing.

GT_OBJECT Ggetopen(type) returns current open object of given type.

Gpushopen(obj) saves current open object(of same type) and opens obj.

Gpopopen(obj) makes the previously saved object of same type the open object.

Ggetarray(obj, array) fills out array with data representing object.

GT_OBJECT Gexecarray(array) create object from data in array.
Page 63

GT_OBJECT Gapplyarray(object, array) modify object using data in array.

G_OBJECT Gnext(obj) return next object in structure in which obj resides.

G_OBJECT Gprev(obj) return previous object in structure in which obj resides.

G_OBJECT Gfirst(obj) return first object of structure in which obj resides.

G_OBJECT Glast(obj) return last object of structure in which obj resides.

G_OBJECT Gfirstelement(obj) return first object in substructure of obj.

G_OBJECT Glastelement(obj) return last object in substructure of obj.

G_OBJECT Gparent(obj) return handle of parent of obj (NULL if none).

Gexcise(obj) detach object from it's parent.

Ginsert(obj, obefore) insert obj into structure right before obefore

Gappend(obj, destobj) append obj to end of destobj, making destobj the parent.

Gpreappend(obj, destobj) append obj to beginning of destobj, the parent.

Gdelete(obj) delete obj from structure.

G_OBJECT Gcopy(obj) make copy of object and contents and return copies'
handle.

Gpurge(obj) delete all elements of substructures of obj but not obj itself.

Rendering Management

 to currently open window).

Gtranslate PGL OPERATIONS
Gtranslate

DEFINITION

Translates a user specified graphic object in the (x, y)
coordinate plane. This may change the inquireable values of the
object. The resultant object is not checked whether it is still
in the coordinate space (i.e. if it overflowed).

OPERATION

void Gtranslate(obj, dx, dy)
GT_OBJECT obj;
GT_COORD dx, dy;
Page 64

PRIMITIVES

Adjusts the primitives internal coordinate description by
the world coordinate translation (dx, dy).

SEGMENTS

Adjusts the segments position by adding the world coordinate
translation (dx, dy) to the segment elements (transx, transy).

WINDOWS

Adjusts the windows screen position by the screen coordinate
translation (dx, dy).

VIEWS

Adjusts the view by the world coordinate translation (dx, dy)
by adding these values to the view's world coordinate parameters
(this is the same as pan (i.e. Gpanview)).

EXAMPLES

BUGS

The graphic objects GO_DEVICE, GO_PICTURE and GO_SYMBOLICPICTURE are
not supported and this function will return without doing anything
when these are found.
The coordinates input must be of type GT_COORD but these are interpreted
as type GT_SCOORD to translate a window object.

SEE ALSO

Gposition,

Gposition PGL OPERATIONS Gposition

DEFINITION

Translates a user specified graphic object in the (x, y) coordinate
plane so that it's reference point lies at the specified position.
This may change the inquireable values of the object. The resultant
object is not checked whether it is still in the coordinate space
(i.e. if it overflowed).

OPERATION

void Gposition(obj, x, y)
GT_OBJECT obj;
GT_COORD x, y;
Page 65

PRIMITIVES

Adjusts the primitives internal coordinate description such
that the world coordinate reference point lies at (x, y).
See the specific primitive documentation for information
on each one's reference point.

SEGMENTS

Adjusts the segments position by adding a world coordinate
translation to the segment elements (transx, transy) such
that the segment's reference point lies at (x, y). The segment
reference point is the world coordinate of the lower left hand
corner of the segment's extrema.

WINDOWS

Adjusts the windows screen position such that the screen's
screen coordinate reference point lies at (x, y). The screen
reference point is the screen coordinate of it's lower left
hand corner.

VIEWS

Adjusts the view by a world coordinate translation such that
the view's reference point lies at (x, y). The view reference
point is the world coordinate of it's lower left hand corner.

EXAMPLES

BUGS

The graphic objects GO_DEVICE, GO_PICTURE and GO_SYMBOLICPICTURE are
not supported and this function will return without doing anything
when these are found.
The coordinates input must be of type GT_COORD but these are interpreted
as type GT_SCOORD to position a window object.

SEE ALSO

Gtranslate,

Grotate PGL OPERATIONS Grotate

DEFINITION

Rotates a user specified graphic object in the (x, y) coordinate
plane so that it's reference point lies at the specified position.
This may change the inquireable values of the object. The resultant
object is not checked whether it is still in the coordinate space
(i.e. if it overflowed).
Page 66

OPERATION

void Grotate(obj, angle)
GT_OBJECT obj;
GT_ANGLE angle;

PRIMITIVES

Adjusts the call primitives internal angle element such
that the primitive or segment that the primitive calls
are rotated to a new angle. The new angle is 'angle' degrees
added to the old one. This does not change the
actual graphic elements the call invokes in any way.

SEGMENTS

Adjusts the segments orientation by adding the specified angle
to the internal segment 'angle' element. All objects in the
segment will be displayed at an additional rotation of 'angle'
degrees when the segment is drawn. This does not change the
actual graphic elements of the segment in any way.

EXAMPLES

BUGS

The graphic objects GO_WINDOW, GO_VIEW, GO_DEVICE, GO_PICTURE and
GO_SYMBOLICPICTURE and all primitives besides the call primitive are
not supported and this function will return without doing anything
when these are found.

SEE ALSO

Gcall, Gsegment

Gscale PGL OPERATIONS
Gscale

DEFINITION

Scales the given object by the given factors. This changes the actual
internal data of the object.

PURPOSE

To provide a method of scaling objects hiding the fact that each object
type must use different algorithms to accomplish this.

OPERATION

int Gscale(obj, newxdim, oldxdim, newydim, oldydim)
GT_OBJECT obj;
GT_COORD newxdim, oldxdim;
Page 67

GT_COORD newydim, oldydim;

Non-zero is returned if this operation fails (i.e. because the operation
is not defined for the given object).
The scale factor along the X-axis is newxdim/oldxdim. Similarly the
Y-axis scale factor is newydim/oldydim. For each coordinate, the scale
factors are multiplied by the distance of the coordinate from the
scaling center.

PRIMITIVES

The scaling center is the center of the primitive extrema.

SEGMENTS

The scaling center is the center of the segment extrema. All
primitives in the segment are scaled around this point.

WINDOWS

This operation is undefined for this object type.

VIEWS

This operation is undefined for this object type.

PICTURES

This operation is undefined for this object type.

SYMBOLIC PICTURES

This operation is undefined for this object type.

DEVICES

This operation is undefined for this object type.

EXAMPLES

static void play_with_object_size(object)
GT_OBJECT object;

{
GT_EXTREMA bounds;
Ggetextrem(object, &bounds);

/* make the object be 100 world coordinates tall
 and 200 world coordinates wide */

Gscale(object,
/* newxdim, oldxdim */
(GT_COORD)100, bounds.xmax - bounds.xmin,
/* newydim, oldydim */
(GT_COORD)200, bounds.ymax - bounds.ymin);
Page 68

/* double the size of the object */
Gscale(object, (GT_COORD)2, (GT_COORD)1, (GT_COORD)2, (GT_COORD)1):
}

BUGS

SEE ALSO

Gresize, Gtranslate, Grotate, Gposition.

Gresize PGL OPERATIONS
Gresize

DEFINITION

Resizes the given object to be the given size.

PURPOSE

To provide a method of resizing objects hiding the fact that each object
type must use different algorithms to accomplish this.

OPERATION

int Gresize(obj, xext, yext)
GT_OBJECT obj;
GT_COORD xext, yext;

Non-zero is returned if this operation fails (i.e. because the operation
is not defined for the given object).

PRIMITIVES

The primitive is resized to have the given extrema, keeping
the reference point at the same location.

SEGMENTS

All primitives in the segment are resized to have the given
extrema. As if the Gresize call had been made for each primitive
separately.

WINDOWS

This operation is undefined for this object type.

VIEWS

This operation is undefined for this object type.

PICTURES
Page 69

This operation is undefined for this object type.

SYMBOLIC PICTURES

This operation is undefined for this object type.

DEVICES

This operation is undefined for this object type.

EXAMPLES

BUGS

SEE ALSO

Gscale, Gtranslate, Grotate, Gposition.

 PGL DRAW OPERATIONS

The following are rendering routines that accept a context and world
coordinates and then draw to the currently open window.

void Gdrawrectangle(ctx, x1, y1, x2, y2)
void Gdrawtext(ctx, x, y, string, len)
void Gdrawline(ctx, x1, y1, x2, y2)
void Gdraw3line(ctx, x1, y1, z1, x2, y2, z2)
void Gdrawpline(ctx, array, number)
void Gdraw3pline(ctx, array, number)
void Gdrawelipse(ctx, xc, yc, a, b)
void Gdrawarc(ctx, xc, yc, a, b, start, end)
void Gdrawpolygon(ctx, linelist, arclist)

The following are rendering routines that accept device coordinates and
will do little or no clipping and directly call the lowest level graphics (or
resident rendering system).

void (*Gr_aline)();
void (*Gr_putchr)();
void (*Gr_elipse)();
void (*Gr_clear)();
void (*Gr_pixel)();
void (*Gr_fline)();
void (*Gr_fclear)();
void (*Gr_fpattern)();
void (*Gr_rop)();
void (*Gr_cursor)();
void (*Gr_setwritemode)();
void (*Gr_setcolor)();
void (*Gr_setclipbounds)();

See the description of the particular primitive for more information.
Page 70

Gdraw PGL DRAW OPERATIONS
Gdraw

DEFINITION

Renders a user specified graphic object.

OPERATION

void Gdraw(obj)
GT_OBJECT obj;

PRIMITIVES

Renders the primitive using the currently open picture's
world/viewport transformations, clipping boundaries,
window and device. If the primitive has the hidden attribute
set to TRUE in it's graphic context then it is not drawn.

SEGMENTS

Renders the primitives in the segment using the currently
open picture's world/viewport transformations, clipping
boundaries, window and device. If there is a translation and
or rotation associated with the segment, these are applied
to each of it's primitives. If the primitive has the hidden
attribute set to TRUE in it's graphic context then it is not
drawn.

WINDOWS

Renders each picture that has been associated with the window.
(or conversely, renders each picture that has as it's window
element the input window to Gdraw). Note that this may cause
graphics to be drawn on multiple devices.

VIEWS

Renders each picture that has been associated with the view.
(or conversely, renders each picture that has as it's view
element the input view to Gdraw). Note that this may cause
graphics to be drawn in multiple windows on multiple devices.

PICTURES

Renders the segment data based on the world/viewport
transformation derived from the picture's 'view' element
to the picture's 'window' element on the picture's device
element. The data is clipped to the 'view's world coordinate
boundary. The picture's GARG_FILL, GARG_PATTERN attributes in
it's graphic context determine the pictures background color
and fill pattern (if any).
Page 71

SYMBOLIC PICTURES

Renders each associated picture.

DEVICES

Not supported at this time.....

SUPPORT FUNCTIONS

void Gmoddraw(va_alist)
va_dcl

Modifes the current draw state.

Allowable keywords:

GARG_TRANSLATION(GT_D32COORD)x translation,
(GT_D32COORD)y translation.
Sets the device translation
in device coordinates.

GARG_DEVICECLIPRECT(GT_D32COORD)xmin,
(GT_D32COORD)ymin,
(GT_D32COORD)xmax,
(GT_D32COORD)ymax
Sets the clipping rectangle
in device (16:16) coordinates.

GARG_CLIPRECT(GT_COORD)xmin,
(GT_COORD)ymin,
(GT_COORD)xmax,
(GT_COORD)ymax
Sets the clipping rectangle
in world coordinates.

void Ginqdraw(va_alist)
va_dcl

Inquires the current draw state and returns the values
requested. Valid 'GARG_' keywords are the same as those for
Gdrawmodify.

void Gdrawpushstate(state)
char **state;

Saves the current draw state and returns its handle.

void Gdrawpopstate(state)
char *state;
Page 72

Restores the given graphics draw state to the state specified
by the given handle.

void Gmodtransform(va_alist)
va_dcl

Modifies the current drawing transformation function.

Allowable keywords:

GARG_DRAWTRANSFORMATION_PROCS(GT_D32FNPTR)transx,
(GT_D32FNPTR)transy
The routines which
take a world coord
(GT_COORD) and transform
it into a device coord
(GT_D32COORD).
If NULL, a 1-to-1 world
to device transformation
is installed.

void Ginqtransform(va_alist)
va_dcl

Inquires the current draw transform and returns the values
requested. Valid 'GARG_' keywords are the same as those for
Gmodtransform.

EXAMPLES

BUGS

SEE ALSO

Ghide, Gsetclip, Gunsetclip Gsetdeviceclip, Gunsetdeviceclip

Ghide PGL DRAW OPERATIONS
Ghide

DEFINITION

Hides/unhides a user specified graphic object. The displayed object will
be undrawn/drawn and it's hidden attribute set/cleared. The method of
undrawing is to set the objects hidden attribute in it's graphic context
to TRUE and then draw the graphics objects that were behind and within
it's extrema.

OPERATION

void Ghide(obj, flag)
GT_OBJECT obj;
int flag;
Page 73

PRIMITIVES

Hides/unhides primitive if flag TRUE/FALSE. Assumes the
primitive exists in the currently open picture, which is used
to redraw background (to hide) and to draw the primitive
(unhide).

SEGMENTS

Hides/unhides segment if flag TRUE/FALSE. Assumes the
segment exists in the currently open picture, which is used
to redraw background (to hide) and to draw the segment
(unhide).

WINDOWS

Hides/unhides window if flag TRUE/FALSE.

VIEWS

Hides/unhides view if flag TRUE/FALSE. To hide view each picture
associated with the view has it's window element redrawn to
clip bounds set to the view's extrema.

PICTURES

Hides/unhides picture if flag TRUE/FALSE. To hide picture it's
window element is redrawn to clip bounds set to the pictures
extrema.

SYMBOLIC PICTURES

Hides/unhides each picture if flag TRUE/FALSE.

DEVICES

Not supported at this time.....

EXAMPLES

BUGS

The graphic objects GO_DEVICE is not supported and this function will
return without doing anything when this is found.

SEE ALSO

Gdraw, Gsetclip, Gunsetclip Gsetdeviceclip, Gunsetdeviceclip

Gsetclip PGL DRAW OPERATIONS Gsetclip

DEFINITION
Page 74

Specifies a clipping rectangle to be used in addition to the world
bounds of the view in the currently open picture. This additional
clipping criteria is in effect until the associated function
'Gunsetclip' is called.

OPERATION

void Gsetclip(picture, wxmin, wymin, wxmax, wymax)
GT_OBJECT picture;
GT_COORD wxmin, wymin, wxmax, wymax;

The parameters (wxmin, wymin, wxmax, wymax) are the coordinates of
the lower left hand corner and upper right hand corner of the clip
bounds. These world coordinates are relative to the world coordinate
space created by the picture's view. Therefore this clip rectangle
is altered to be a subset of the input picture's view's world clip
bounds if necessary. This additional clipping is applied to all
rendering done in the window associated with the input picture.

PRIMITIVES

Primitives are clipped to both the standard and the supplied
clip rectangles if the window of the currently open picture
is the same as the window of the picture passed to Gsetclip.

SEGMENTS

Segments are clipped to both the standard and the supplied
clip rectangles if the window of the currently open picture
is the same as the window of the picture passed to Gsetclip.

WINDOWS

All windows except the window of the picture passed to Gsetclip
will ignore the additional clip bounds.

VIEWS

Views are clipped to both the standard and the supplied
clip rectangles if the window of the currently open picture
is the same as the window of the picture passed to Gsetclip.

EXAMPLES

BUGS

There can be only one additional clip bounds at one time.

SEE ALSO

Gdraw, Ghide, Gsetclip, Gunsetclip Gsetdeviceclip, Gunsetdeviceclip
Page 75

Gunsetclip PGL DRAW OPERATIONS
Gunsetclip

DEFINITION

Causes all draws to ignore the clip bounds set by the function
'Gsetclip'.

OPERATION

void Gunsetclip()

EXAMPLES

BUGS

To reenable the clip bounds again, Gsetclip must be recalled with the
original parameters.

SEE ALSO

Gsetclip, Gsetdeviceclip, Gunsetdeviceclip, Gdraw, Ghide

Gsetdeviceclip PGL DRAW OPERATIONS
Gunsetdeviceclip

DEFINITION

Specifies a clipping rectangle to be used in addition to the world
bounds of the view in the currently open picture. This additional
clipping criteria is in effect until the associated function
'Gunsetdeviceclip' is called.

OPERATION

void Gsetdeviceclip(dxmin, dymin, dxmax, dymax)
GT_DCOORD dxmin, dymin, dxmax, dymax;

The parameters (dxmin, dymin, dxmax, dymax) are the coordinates of
the lower left hand corner and upper right hand corner of the clip
bounds. These device coordinates are relative to the device coordinate
space of any open picture's device. This additional clipping is
applied to all rendering done on any devices.

PRIMITIVES

Primitives are clipped to both the standard and the supplied
clip rectangles.

SEGMENTS

Segments are clipped to both the standard and the supplied
Page 76

clip rectangles.

WINDOWS

Windows are clipped to both the standard and the supplied
clip rectangles. Note that window borders may not be clipped
to the additional clip bounds supplied by Gsetdeviceclip.

VIEWS

Views are clipped to both the standard and the supplied
clip rectangles.

EXAMPLES

BUGS

There can be only one additional clip bounds at one time.

SEE ALSO

Gdraw, Ghide, Gsetclip, Gunsetclip Gunsetdeviceclip

Gunsetdeviceclip PGL DRAW OPERATIONS Gunsetdeviceclip

DEFINITION

Causes all draws to ignore the clip bounds set by the function
'Gsetdeviceclip'.

OPERATION

void Gunsetdeviceclip()

EXAMPLES

BUGS

To reenable the clip bounds again, Gsetdeviceclip must be recalled with
the original parameters.

SEE ALSO

Gsetdeviceclip, Gsetclip, Gunsetclip, Gdraw, Ghide

Ggettype PGL OPERATIONS Ggettype

DEFINITION

Returns the graphic type of the given graphic object. The type is
used to identify what kind of object the graphic object actually is.
Page 77

OPERATION

GT_TYPE Ggettype(obj)
GT_OBJECT obj;

PRIMITIVES

The primitive's graphic type is returned.

SEGMENTS

The segment's graphic type (GO_SEGMENT or GO_CSEGMENT) is
returned.

WINDOWS

The window's graphic type (GO_WINDOW) is returned.

VIEWS

The view's graphic type (GO_VIEW) is returned.

PICTURES

The picture's graphic type (GO_PICTURE) is returned.

SYMBOLIC PICTURES

The symbolic picture's graphic type (GO_SYMBOLICPICTURE) is
returned.

DEVICES

The device's graphic type (GO_DEVICE) is returned.

EXAMPLES

BUGS

SEE ALSO

Ggetextrema PGL OPERATIONS
Ggetextrema

DEFINITION

Returns the extrema of the given graphic object. The extrema is defined
as the coordinates of the lower left hand corner and upper right hand
corner of the smallest enclosing orthogonal rectangle enclosing a
Page 78

graphics object.

OPERATION

void Ggetextrema(obj, bounds)
GT_OBJECT obj;
GT_EXTREMA *bounds;/* The GT_EXTREMA values are filled in*/

PRIMITIVES

The primitive's extrema is returned in world coordinates.

SEGMENTS

The segment's extrema, which is the smallest orthogonal
rectangle enclosing all of the primitives in the segment, is
returned in world coordinates.

WINDOWS

The window's extrema is returned in world coordinates as
the maximum extrema possible.

VIEWS

The view's graphic type (GO_VIEW) is returned.

PICTURES

The picture's extrema in it's associated device coordinates
is returned.

SYMBOLIC PICTURES

Extrema is undefined for this object.

DEVICES

The device's extrema is returned in device coordinates. This may
be used to determine the physical dimensions (resolution) of a
video device.

EXAMPLES

BUGS

SEE ALSO

Gopen PGL OPERATIONS Gopen

DEFINITION
Page 79

Establishes the given graphic object as the open object of it's type.
This is used to speed up and simplify operations that might otherwise
need to have extra parameters.

OPERATION

int Gopen(obj)
GT_OBJECT obj;

A non-zero value is returned if the open operation is undefined
for the input graphic object 'obj'.

PRIMITIVES

The open operation is undefined for primitives.

SEGMENTS

The input segment becomes the open segment.

WINDOWS

The input window becomes the open window.

VIEWS

The input view becomes the open view.

PICTURES

The input picture becomes the open picture.

SYMBOLIC PICTURES

The open operation is undefined for symbolic pictures.

DEVICES

The input device becomes the open device.

EXAMPLES

BUGS

SEE ALSO

Gpushopen, Gpopopen, Ggetopen

Gclose PGL OPERATIONS
Gclose

DEFINITION
Page 80

This function is for completeness only and does not do anything at
this time.

OPERATION

int Gclose(obj)
GT_OBJECT obj;

PRIMITIVES

SEGMENTS

WINDOWS

VIEWS

PICTURES

SYMBOLIC PICTURES

DEVICES

EXAMPLES

BUGS

SEE ALSO

Gopen, Gpushopen, Gpopopen, Ggetopen

Ggetopen PGL OPERATIONS Ggetopen

DEFINITION

Returns the currently open graphic object of the given type.

OPERATION

GT_OBJECT Ggetopen(type)
GT_TYPE type;

A NULL is returned if the open operation is undefined
for the input graphic type 'type'.

PRIMITIVES

The open operation is undefined for primitives.
NULL is returned.

SEGMENTS

The currently open segment is returned.
Page 81

WINDOWS

The currently open window is returned.

VIEWS

The currently open view is returned.

PICTURES

The currently open picture is returned.

SYMBOLIC PICTURES

The open operation is undefined for symbolic pictures.
NULL is returned.

DEVICES

The currently open device is returned.

EXAMPLES

BUGS

SEE ALSO

Gopen, Gclose, Gpushopen, Gpopopen

Gpushopen PGL OPERATIONS Gpushopen

DEFINITION

Saves the currently open object of the same type as the given object
on an internal stack and then establishes the given graphic object as
the open object of it's type. This allows routines to open a graphic
object without having to get, save and restore the previously open
graphics state.

OPERATION

int Gpushopen(obj)
GT_OBJECT obj;

A non-zero value (2) is returned if the open operation is
undefined for the input graphic object 'obj'. A non-zero
value (1) is returned if the internal stack is full. Otherwise
zero is returned.

PRIMITIVES

The open operation is undefined for primitives.
Page 82

SEGMENTS

The input segment becomes the open segment.

WINDOWS

The input window becomes the open window.

VIEWS

The input view becomes the open view.

PICTURES

The input picture becomes the open picture.

SYMBOLIC PICTURES

The open operation is undefined for symbolic pictures.

DEVICES

The input device becomes the open device.

EXAMPLES

BUGS

There is a finite number of objects that can be pushed. This
should be configurable by the application.

SEE ALSO

Gopen, Gclose, Gpopopen, Ggetopen

Gpopopen PGL OPERATIONS Gpopopen

DEFINITION

Retrieves (pops) the object of the same type as the given object from
an internal stack and then establishes it as the open object of it's
type.

OPERATION

int Gpopopen(obj)
GT_OBJECT obj;

A non-zero value (2) is returned if the open operation is
undefined for the input graphic object 'obj'. A non-zero
value (1) is returned if the internal stack is full. Otherwise
zero is returned.
Page 83

PRIMITIVES

The open operation is undefined for primitives.

SEGMENTS

The segment open at the time of the previous call to Gpushopen
that had a segment object as the graphic object parameter
becomes the open segment.

WINDOWS

The window open at the time of the previous call to Gpushopen
that had a window object as the graphic object parameter
becomes the open window.

VIEWS

The view open at the time of the previous call to Gpushopen
that had a view object as the graphic object parameter
becomes the open view.

PICTURES

The picture open at the time of the previous call to Gpushopen
that had a picture object as the graphic object parameter
becomes the open picture.

SYMBOLIC PICTURES

The open operation is undefined for symbolic pictures.

DEVICES

The device open at the time of the previous call to Gpushopen
that had a device object as the graphic object parameter
becomes the open device.

EXAMPLES

BUGS

SEE ALSO

Gopen, Gclose, Gpushopen, Ggetopen

Ggetarray PGL OPERATIONS Ggetarray

DEFINITION

Fills out a structure pointed to by 'array' that represents
enough information about the given object (except the graphic context
Page 84

of the object) to generate a copy of it. This can be used by a file
system, to automate creation of large quantities of graphics objects,
or to make a copy of the given object after it has been deleted.

OPERATION

int Ggetarray(obj, array)
GT_OBJECT obj;
GT_ARRAY array; /* RETURNED with caller allocated

array filled out */

Fills out the array with the appropriate values. See the file 'garray.h'
for the definition of the various array structures. Returns size of
(number of bytes in) the array.

PRIMITIVES

The array is generated reflecting the primitive.

SEGMENTS

The array is generated reflecting the segment.

WINDOWS

The array is generated reflecting the window.

VIEWS

The array is generated reflecting the view.

PICTURES

The array is generated reflecting the picture.

SYMBOLIC PICTURES

The Ggetarray operation is undefined for symbolic pictures.

DEVICES

The array is generated reflecting the device.

EXAMPLES

BUGS

SEE ALSO

Gexecarray, Gapplyarray
Page 85

Gexecarray PGL OPERATIONS
Gexecarray

DEFINITION

Creates and returns a handle to a copy of the object that the array
is gotten from.

PURPOSE

Takes the array that is filled out by a previous Ggetarray function
call on a graphics object and creates a image of the graphics object.

OPERATION

GT_OBJECT Gexecarray(array)
GT_ARRAY array;

EXAMPLES

BUGS

SEE ALSO

Ggetarray, Gapplyarray

Gapplyarray PGL OPERATIONS
Gapplyarray

DEFINITION

Modifies the given object making it similar to the original object
that the array structure was gotten from. This is similar to a
series of GinqXXXXX(original object) and GmodXXXXX(object) calls.

OPERATION

GT_OBJECT Gapplyarray(object, array)
GT_OBJECT object;
GT_ARRAY array;

PRIMITIVES

This function deletes the given object and returns a handle
to a new object matching the given array. The new object is
in the same position in it's parent segment.

SEGMENTS

The segment is modified reflecting the array.

WINDOWS
Page 86

The window is modified reflecting the array.

VIEWS

The view is modified reflecting the array.

PICTURES

This function deletes the given object and returns a handle
to a new object matching the given array. The new object is
in the same position in it's picture list.

SYMBOLIC PICTURES

The Gapplyarray operation is undefined for symbolic pictures.

DEVICES

The device is modified reflecting the array.

EXAMPLES

BUGS

Modifying a picture (and symbolic picture?) may not restore the
picture correctly in the view, window, device lists. This will
be repaired someday.

SEE ALSO

Ggetarray, Gexecarray

Gnext PGL OBJECT TRAVERSAL OPERATIONS
Gnext

DEFINITION

Returns the handle of the next object following the given object from
one of the internally maintained lists of graphic data. NULL is returned
if no objects follow the given one.

OPERATION

GT_OBJECT Gnext(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the next primitive following
the given primitive in the given primitive's segment.

SEGMENTS
Page 87

This function returns the handle of the next primitive following
the given segment in the given segment's segment. However,
if the segment has no 'parent' segment, then the segment
following the given segment is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the next subwindow following the given subwindow in
the given subwindows's parent window. However,
if the window has no 'parent' window, then the window
following the given window is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the next subview following the given subview in
the given subview's parent view. However,
if the view has no 'parent' view, then the view
following the given view is returned.
The view is modified reflecting the array.

PICTURES

This function returns the handle of the next picture following
the given picture.

SYMBOLIC PICTURES

This function returns the handle of the next symbolic picture
following the given symbolic picture.

DEVICES

This function returns the handle of the next device following
the given device.

EXAMPLES

BUGS

SEE ALSO

Gprev, Gfirst, Glast, Gfirstelement, Glastelement, Gparent

Gprev PGL OBJECT TRAVERSAL OPERATIONS
Gprev

DEFINITION

Returns the handle of the previous object preceding the given object
from one of the internally maintained lists of graphic data. NULL is
returned if no objects precede the given one.
Page 88

OPERATION

GT_OBJECT Gprev(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the previous primitive
preceding the given primitive in the given primitive's
segment.

SEGMENTS

This function returns the handle of the previous primitive
preceding the given segment in the given segment's segment.
However, if the segment has no 'parent' segment, then the
segment preceding the given segment is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the previous subwindow preceding the given subwindow
in the given subwindows's parent window. However, if the
window has no 'parent' window, then the window preceding the
given window is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the previous subview preceding the given subview in
the given subview's parent view. However, if the view has
no 'parent' view, then the view preceding the given view is
returned. The view is modified reflecting the array.

PICTURES

This function returns the handle of the previous picture
preceding the given picture.

SYMBOLIC PICTURES

This function returns the handle of the previous symbolic
picture preceding the given symbolic picture.

DEVICES

This function returns the handle of the previous device
preceding the given device.

EXAMPLES

BUGS
Page 89

SEE ALSO

Gnext, Gfirst, Glast, Gfirstelement, Glastelement, Gparent

Gfirst PGL OBJECT TRAVERSAL OPERATIONS
Gfirst

DEFINITION

Returns the handle of the first object in the internally maintained
list of graphic data of which the given object is a member.

OPERATION

GT_OBJECT Gfirst(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the first primitive
in the segment in which the given primitive resides.

SEGMENTS

This function returns the handle of the first primitive
in the segment in which the given segment resides.
However, if the segment has no 'parent' segment, then the
first segment in the list of segments is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the first subwindow in the parent window in which
the given subwindow resides. However, if the
window has no 'parent' window, then the first window in the
list of windows is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the first subview in the parent view in which
the given subview resides. However, if the view has no
'parent' view, then the first view in the list of views is
returned.

PICTURES

This function returns the handle of the first picture
in the list of pictures.

SYMBOLIC PICTURES

This function returns the handle of the first symbolic picture
Page 90

in the list of symbolic pictures.

DEVICES

This function returns the handle of the first device
in the list of devices.

EXAMPLES

BUGS

This barfs if an excised object, which resides in no list, is the
given object.

SEE ALSO

Gnext, Gprev, Glast, Gfirstelement, Glastelement, Gparent, Gexcise

Glast PGL OBJECT TRAVERSAL OPERATIONS
Glast

DEFINITION

Returns the handle of the last object in the internally maintained
list of graphic data of which the given object is a member.

OPERATION

GT_OBJECT Glast(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the last primitive
in the segment in which the given primitive resides.

SEGMENTS

This function returns the handle of the last primitive
in the segment in which the given segment resides.
However, if the segment has no 'parent' segment, then the
last segment in the list of segments is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the last subwindow in the parent window in which
the given subwindow resides. However, if the
window has no 'parent' window, then the last window in the
list of windows is returned.

VIEWS
Page 91

If the view is a subview, the this function returns the
handle of the last subview in the parent view in which
the given subview resides. However, if the view has no
'parent' view, then the last view in the list of views is
returned.

PICTURES

This function returns the handle of the last picture
in the list of pictures.

SYMBOLIC PICTURES

This function returns the handle of the last symbolic picture
in the list of symbolic pictures.

DEVICES

This function returns the handle of the last device
in the list of devices.

EXAMPLES

BUGS

This barfs if an excised object, which resides in no list, is the
given object.

SEE ALSO

Gnext, Gprev, Gfirst, Gfirstelement, Glastelement, Gparent, Gexcise

Gfirstelement PGL OBJECT TRAVERSAL OPERATIONS
Gfirstelement

DEFINITION

Returns the handle of the first child object of the given object. If
the object is not a parent object or has no children then NULL is
returned.

OPERATION

GT_OBJECT Gfirstelement(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the first primitive
in the segment in which the given primitive resides.

SEGMENTS
Page 92

This function returns the handle of the first primitive
in the segment in which the given segment resides.
However, if the segment has no 'parent' segment, then the
first segment in the list of segments is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the first subwindow in the parent window in which
the given subwindow resides. However, if the
window has no 'parent' window, then the first window in the
list of windows is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the first subview in the parent view in which
the given subview resides. However, if the view has no
'parent' view, then the first view in the list of views is
returned.

PICTURES

This function returns the handle of the first picture
in the list of pictures.

SYMBOLIC PICTURES

This function returns the handle of the first symbolic picture
in the list of symbolic pictures.

DEVICES

This function returns the handle of the first device
in the list of devices.

EXAMPLES

BUGS

This barfs if an primitive object, which has no elements, is the
given object.
This always barfs cause head/tail point to pictures not elements
any more.

SEE ALSO

Gfirst, Gnext, Gprev, Glast, Glastelement, Gparent, Gexcise

Glastelement PGL OBJECT TRAVERSAL OPERATIONS
Glastelement

DEFINITION
Page 93

Returns the handle of the last child object of the given object. If
the object is not a parent object or has no children then NULL is
returned.

OPERATION

GT_OBJECT Glastelement(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the last primitive
in the segment in which the given primitive resides.

SEGMENTS

This function returns the handle of the last primitive
in the segment in which the given segment resides.
However, if the segment has no 'parent' segment, then the
last segment in the list of segments is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the last subwindow in the parent window in which
the given subwindow resides. However, if the
window has no 'parent' window, then the last window in the
list of windows is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the last subview in the parent view in which
the given subview resides. However, if the view has no
'parent' view, then the last view in the list of views is
returned.

PICTURES

This function returns the handle of the last picture
in the list of pictures.

SYMBOLIC PICTURES

This function returns the handle of the last symbolic picture
in the list of symbolic pictures.

DEVICES

This function returns the handle of the last device
in the list of devices.

EXAMPLES
Page 94

BUGS

This barfs if an primitive object, which has no elements, is the
given object.
This always barfs cause head/tail point to pictures not elements
any more.

SEE ALSO

Gfirst, Gnext, Gprev, Glast, Gfirstelement, Gparent, Gexcise

Gparent PGL OBJECT TRAVERSAL OPERATIONS
Gparent

DEFINITION

Returns the handle of the parent object of the given object. If
the object does not have a parent object then NULL is returned.

OPERATION

GT_OBJECT Gparent(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns the handle of the segment in which the
given primitive resides.

SEGMENTS

This function returns the handle of the segment in which the
given segment resides. However, if the segment has no 'parent'
segment, then NULL is returned.

WINDOWS

If the window is a subwindow, the this function returns the
handle of the parent window in which the given subwindow
resides. However, if the window has no 'parent' window, then
NULL is returned.

VIEWS

If the view is a subview, the this function returns the
handle of the parent view in which the given subview
resides. However, if the view has no 'parent' view, then
NULL is returned.

PICTURES

This function returns NULL.
Page 95

SYMBOLIC PICTURES

This function returns NULL.

DEVICES

This function returns NULL.

EXAMPLES

BUGS

SEE ALSO

Gfirst, Gnext, Gprev, Glast, Gfirstelement, Glastelement, Gexcise

Gexcise PGL OBJECT MANIPULATION OPERATIONS
Gexcise

DEFINITION

Removes the given graphic object from associations from any other
graphic objects and any internally maintained lists.

OPERATION

void Gexcise(object)
GT_OBJECT object;

PRIMITIVES

SEGMENTS

WINDOWS

given subwindow from it's parent window. However, if the window
is not a subwindow it is removed from the internal list of
windows.

VIEWS

If the view is a subview, then this function removes the
given subview from it's parent view. However, if the view
is not a subview it is removed from the internal list of
views.

PICTURES

The picture is removed from the internal list of pictures.

SYMBOLIC PICTURES
Page 96

The picture is removed from the internal list of symbolic
pictures.

DEVICES

The device is removed from the internal list of devices.

EXAMPLES

BUGS

This function dies if an object already excised if excised again.

SEE ALSO

Gappend, Gprepend, Gcopy, Ginsert, Gdelete

Ginsert PGL OBJECT MANIPULATION OPERATIONS
Ginsert

DEFINITION

Inserts the first of the given objects into the list the second given
object resides in immediately before the second given object.

OPERATION

void Ginsert(obj, obefore)
GT_OBJECT obj;
GT_OBJECT obefore;

PRIMITIVES

This function inserts the primitive 'obj' immediately before
the primitive 'obefore' in the segment in which the given
primitive 'obefore' resides in.

SEGMENTS

If the segment 'obefore' resides in another segment as a
primitive then this function inserts the segment 'obj'
immediately before the primitive 'obefore' in the segment in
which the given primitive 'obefore' resides in. Otherwise,
this function inserts the segment 'obj' immediately before the
segment 'obefore' in the internal list of segments.

WINDOWS

If window 'obefore' is a subwindow then this function inserts
the window 'obj' immediately before the subwindow 'obefore' in
the window in which the given subwindow 'obefore' resides in.
This makes window 'obj' a subwindow. Otherwise, this function
inserts the window 'obj' immediately before the window
Page 97

'obefore' in the internal list of windows.

VIEWS

If view 'obefore' is a subview then this function inserts
the view 'obj' immediately before the subview 'obefore' in
the view in which the given subview 'obefore' resides in.
This makes view 'obj' a subview. Otherwise, this function
inserts the view 'obj' immediately before the view
'obefore' in the internal list of views.

PICTURES

The picture 'obj' is inserted before the picture 'obefore'
in the internal list of pictures.

SYMBOLIC PICTURES

The symbolic picture 'obj' is inserted before the symbolic
picture 'obefore' in the internal list of symbolic pictures.

DEVICES

The device 'obj' is inserted before the device 'obefore'
in the internal list of devices.

EXAMPLES

BUGS

This function assumes the objects are of the same type and so are
compatible residing in the same list. The only exception is that
segments may be inserted into lists of primitives.
This function dies if the second object 'obefore' is not in any list.

SEE ALSO

Gappend, Gprepend, Gcopy, Gexcise, Gdelete

Gappend PGL OBJECT MANIPULATION OPERATIONS
Gappend

DEFINITION

Appends the given object onto the end of the list of the parent object's
elements (children).

OPERATION

void Gappend(obj, parent)
GT_OBJECT obj;
GT_OBJECT parent;
Page 98

PRIMITIVES

This function appends the primitive 'obj' to the end of the
list of primitives in the given segment 'parent'.

SEGMENTS

This function appends the segment 'obj' to the end of the
list of primitives in the given segment 'parent'.

WINDOWS

This function appends the window 'obj' to the end of the
list of subwindows in the given window 'parent'. The window
'obj' thereby becomes a subwindow of the 'parent' window.

VIEWS

This function appends the view 'obj' to the end of the
list of subviews in the given view 'parent'. The view
'obj' thereby becomes a subview of the 'parent' view.

PICTURES

This function is undefined for pictures.

SYMBOLIC PICTURES

This function is undefined for pictures.

DEVICES

This function is undefined for pictures.

EXAMPLES

BUGS

This function assumes that the graphic object 'obj' is of the correct
type compatible with being a child of the graphic object 'parent'. The
only exception is that segments may be appended onto lists of primitive.
Otherwise the resulting effects are indefinable.

SEE ALSO

Ginsert, Gprepend, Gcopy, Gexcise, Gdelete

Gprepend PGL OBJECT MANIPULATION OPERATIONS
Gprepend

DEFINITION

Prepends the given object onto the start of the list of the parent
Page 99

object's elements (children). I.E. the given graphic object 'obj'
becomes the first child of the parent graphics object 'parent'.

OPERATION

void Gprepend(obj, parent)
GT_OBJECT obj;
GT_OBJECT parent;

PRIMITIVES

This function prepends the primitive 'obj' to the start of the
list of primitives in the given segment 'parent'.

SEGMENTS

This function prepends the segment 'obj' to the start of the
list of primitives in the given segment 'parent'. If the
given 'parent' parameter is NULL the segment is prepended to
the beginning of the internal list of segments.

WINDOWS

This function prepends the window 'obj' to the start of the
list of subwindows in the given window 'parent'. The window
'obj' thereby becomes a subwindow of the 'parent' window. If
the given 'parent' parameter is NULL the window is prepended to
the beginning of the internal list of windows.

VIEWS

This function prepends the view 'obj' to the start of the
list of subviews in the given view 'parent'. The view
'obj' thereby becomes a subview of the 'parent' view. If the
given 'parent' parameter is NULL the view is prepended to the
beginning of the internal list of views.

PICTURES

This function is undefined for pictures.

SYMBOLIC PICTURES

This function is undefined for pictures.

DEVICES

This function is undefined for pictures.

EXAMPLES

BUGS
Page 100

This function assumes that the graphic object 'obj' is of the correct
type compatible with being a child of the graphic object 'parent'. The
only exception is that segments may be prepended onto lists of
primitive. Otherwise the resulting effects are indefinable.

SEE ALSO

Ginsert, Gappend, Gcopy, Gexcise, Gdelete

Gdelete PGL OBJECT MANIPULATION OPERATIONS
Gdelete

DEFINITION

Deletes the given object. This function removes the given object from
any references by any other objects and then frees the memory that was
associated with it.

OPERATION

void Gdelete(obj)
GT_OBJECT obj;

PRIMITIVES

This function deletes the primitive 'obj'.

SEGMENTS

This function deletes the segment 'obj' and it's contents
(all primitives and segments within it).

WINDOWS

This function deletes the window 'obj' and all pictures
that reference it.

VIEWS

This function deletes the view 'obj' and all pictures
that reference it.

PICTURES

This function deletes the picture 'obj'.

SYMBOLIC PICTURES

This function deletes the symbolic picture 'obj' and all it's
associated pictures.

DEVICES
Page 101

This function deletes the device 'obj' and all pictures
that reference it. This therefore deletes any instantiation of
system level windows that had existed on the device.

EXAMPLES

BUGS

There is no way to delete only a segment w/o deleting it's contents.
There is no way to delete a device and all windows and views who are
associated with it.
There is no way to delete a window and all views that reference it.

SEE ALSO

Ginsert, Gappend, Gprepend, Gcopy, Gexcise.

Gcopy PGL OBJECT MANIPULATION OPERATIONS
Gcopy

DEFINITION

Makes a copy and returns the handle to it (the copy) of the given
object. This function makes an exact copy except it removes any
references by/to any other objects. (I.E. an exact copy of the excised
given object).

OPERATION

GT_OBJECT Gcopy(obj)
GT_OBJECT obj;

PRIMITIVES

This function returns a handle to a copy of the primitive 'obj'.

SEGMENTS

This function makes a copy of the given segment 'obj' and it's
contents (all primitives and segments within it) and returns a
handle to it. The copy of the segment has no parents.

WINDOWS

This function makes a copy of the given window 'obj' and
returns a handle to it. The copy has all references to
subwindows and associated pictures removed. The copy is
a top level window, i.e. it has no parents.

VIEWS

This function makes a copy of the given view 'obj' and
returns a handle to it. The copy has all references to
Page 102

subviews and associated pictures removed. The copy is
a top level view, i.e. it has no parents.

PICTURES

This function returns a handle to a copy of the picture 'obj'.

SYMBOLIC PICTURES

This function is undefined for symbolic pictures.

DEVICES

This function makes a copy of the given device 'obj' and
returns a handle to it. The copy has all references to
associated pictures removed.

EXAMPLES

BUGS

There is no way to delete only a segment w/o deleting it's contents.
There is no way to delete a device and all windows and views who are
associated with it.
There is no way to delete a window and all views that reference it.

SEE ALSO

Ginsert, Gappend, Gprepend, Gcopy, Gexcise.

Gpurge PGL OBJECT MANIPULATION OPERATIONS
Gpurge

DEFINITION

Deletes the given object's contents. This function removes the given
object's contents (other objects) from any references by any other
objects and then frees the memory that was associated with them.

OPERATION

void Gpurge(obj)
GT_OBJECT obj;

PRIMITIVES

This function does nothing.

SEGMENTS

This function deletes the primitives that are in the segment.

WINDOWS
Page 103

This function deletes all pictures associated with the window.

VIEWS

This function deletes all pictures associated with the view.

PICTURES

This function does nothing.

SYMBOLIC PICTURES

This function does nothing.

DEVICES

This function deletes all pictures associated with the device.

EXAMPLES

BUGS

See delete, there needs to be a more general way of addressing the
contents/header/both.

SEE ALSO

Gdelete, Ginsert, Gappend, Gprepend, Gcopy, Gexcise.

 PGL EVENT MANAGEMENT

Events are handled by passing around GT_EVENT event 'packets'. These
packets contain an abundance of information about the event. Events are stored
internally in a FIFO (first in-first out) queue. Both polling and blocked IO
is
supported.

GT_EVENT packets have a variety of fields that may be accessed by the
application. The functions to do this follow on the succeeding pages. Events
are represented by an event bit mask. They are both enabled and identified by
this mask. The 'validevents' parameter to Gwaitforevent and Gpollforevent and
the 'type' field in a GT_EVENT pack are both of this mask type. See gkbm.h
for the latest and most complete information.

This event bit mask has the following possible values.

G_L_WENTDOWNThe left mouse button was pressed.
G_M_WENTDOWNThe middle mouse button was pressed.
G_R_WENTDOWNThe right mouse button was pressed.
G_L_WENTDOWNThe left mouse button was released.
G_M_WENTDOWNThe middle mouse button was released.
G_R_WENTDOWNThe right mouse button was released.
G_L_CLICKThe left mouse button was rapidly pressed and released.
Page 104

G_M_CLICKThe middle mouse button was rapidly pressed and released.
G_R_CLICKThe right mouse button was rapidly pressed and released.
G_L_DBLCLICKThe left mouse button was rapidly clicked twice.
G_M_DBLCLICKThe middle mouse button was rapidly clicked twice.
G_R_DBLCLICKThe right mouse button was rapidly clicked twice.
G_BUTTONEVENTOne of the mouse buttons was pressed or released.
G_BUTTONDOWNEVENTOne of the mouse buttons was pressed.
G_CLICKEVENTOne of the mouse buttons was clicked.
G_DBLCLICKEVENTOne of the mouse buttons was rapidly clicked twice.
G_MOTIONEVENTThe mouse moved.

G_METAKEYEVENTSome keyboard key other than an ASCII key was pressed.
G_ASCIIKEYEVENTAn ASCII keyboard key was pressed.
G_KEYEVENTSome keyboard key was pressed.

G_INVALIDEVENTThis event can never occur.
G_NULLEVENTThis event is returned when nothing happened(i.e. during a

poll).
G_BORDEREVENTThis event occurred in a window border.
G_ROOTEVENTThis event occurred outside windows created by the

application.
G_GRABSELECTEDEVENTOther events in this bitmask are to be returned

no matter where they may occur. Events that do
not match the other events in the bitmask are
handled normally.

G_GRABEVENT Other events in this bitmask are to be returned
no matter where they may occur. Events that do
not match the other events in the bitmask are
ignored as if they never occurred(i.e. consumed).

G_ALLEVENTS All mouse and keyboard events.

 PGL EVENT MANAGEMENT

The functions that manipulate packets in the queue are:

G_EVENT Gwaitforevent(validevents) waits for and returns valid events.

G_EVENT Gpollforevent(validevents) polls for and returns valid events.

Gputevent(event) puts event into event queue.

Gwaitforevent PGL EVENT MANAGEMENT
Gwaitforevent

DEFINITION

Waits for any one of the given valid events to occur and returns it to
the caller of the function. Any events that occur in the meantime,
including the aforementioned valid event, are inspected to determine
the picture they occurred in. This picture is defined to be the picture
Page 105

the cursor is over at the time of the event. If this picture's
associated view graphic object has a event procedure registered with
it, any events that occur that match the view's specified valid event
mask are sent to the registered procedure. The procedure has the
choice to absorb the event.

PURPOSE

This function can be a used simply to get keyboard and mouse events.
It can also be used as the central dispatcher for an event driven
application. To accomplish this the application registers callback
(notify) procedures with all the view's it will be dealing with and
then calls Gwaitforevent with a mask matching the terminating event
(if any).

OPERATION

GT_EVENT Gwaitforevent(validevents)
GT_EVENTMASK validevents;

EXAMPLES

BUGS

SEE ALSO

Gpollforevent, Gputevent.

Gpollforevent PGL EVENT MANAGEMENT
Gpollforevent

DEFINITION

Polls to see if any one of the given valid events has occurred and
returns it to the caller of the function if found. Otherwise
G_NULLEVENT is returned. The event itself is left in the internal
queue until Gwaitforevent is called.

PURPOSE

This function is used to check what the next event is the queue is
(if any).

OPERATION

GT_EVENT Gpollforevent(validevents)
GT_EVENTMASK validevents;

EXAMPLES

BUGS

SEE ALSO
Page 106

Gwaitforevent, Gputevent.

Gputevent PGL EVENT MANAGEMENT
Gputevent

DEFINITION

Puts the given event into the queue so that it is the next event to
be read/seen by Gwaitforevent/Gpollforevent.

PURPOSE

This function is used to send events through the event handlers from one
part of the application to another.

OPERATION

int Gputevent(event)
GT_EVENT event;

Zero is returned if successful, otherwise the event queue is
full.

EXAMPLES

BUGS

SEE ALSO

Gwaitforevent, Gpollforevent.

 PGL EVENT MANAGEMENT

Functions are provided to inquire the particular aspects of any event.

Gevent_type(event)
Gevent_value(event)
Gevent_bstate(event)
Gevent_shiftstate(event)
Gevent_deltadevx(event)
Gevent_deltadevy(event)
Gevent_devx(event)
Gevent_devy(event)
Gevent_x(event)
Gevent_y(event)
Gevent_view(event)
Gevent_window(event)
Gevent_picture(event)
Gevent_device(event)
Gevent_time(event)
Page 107

Functions are also provided to set the particular aspects of any event.

Gevent_settype(event)
Gevent_setvalue(event)
Gevent_setbstate(event)
Gevent_setshiftstate(event)
Gevent_setdeltadevx(event)
Gevent_setdeltadevy(event)
Gevent_setdevx(event)
Gevent_setdevy(event)
Gevent_setx(event)
Gevent_sety(event)
Gevent_setview(event)
Gevent_setwindow(event)
Gevent_setpicture(event)
Gevent_setdevice(event)
Gevent_settime(event)

Gevent_type PGL EVENT MANAGEMENT
Gevent_type

DEFINITION

Returns the type of the given event in the form of a mask. This is the
same mask that would be necessary to request this event as a
validevent when passed to Gwaitforevent and Gpollforevent.

PURPOSE

To provide a means to determine the type of event that has occurred.
This

function is sufficient except for the G_MOTIONEVENT (and G_KEYEVENT)
events. In these cases the actual key (or the new position of the
cursor) must still be determined.

OPERATION

GT_EVENTMASK Gevent_type(event)
GT_EVENT event;

The possible values returned are:

G_L_WENTDOWN
G_M_WENTDOWN
G_R_WENTDOWN
G_L_WENTDOWN
G_M_WENTDOWN
G_R_WENTDOWN
G_L_CLICK
G_M_CLICK
G_R_CLICK
G_L_DBLCLICK
Page 108

G_M_DBLCLICK
G_R_DBLCLICK
G_INVALIDEVENT
G_NULLEVENT
G_BORDEREVENT
G_ROOTEVENT
G_GRABSELECTEDEVENT
G_GRABEVENT
G_MOTIONEVENT
G_METAKEYEVENT
G_ASCIIKEYEVENT
G_KEYEVENT
G_DBLCLICKEVENT
G_CLICKEVENT
G_BUTTONEVENT
G_BUTTONDOWNEVENT

EXAMPLES

BUGS

This should be called Gevent_mask and GT_EVENTTYPE should go away.

SEE ALSO

Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window,
Gevent_picture, Gevent_device, Gevent_time.

Gevent_value PGL EVENT MANAGEMENT
Gevent_value

DEFINITION

Returns the value of the given event which is different from the event
type mask for certain events.

PURPOSE

To provide a means to determine the actual type of event that has
occurred. This function is therefore used to determine which particular
key when a G_KEYEVENT event occurs.

OPERATION

GT_EVENTVALUE Gevent_value(event)
GT_EVENT event;

EXAMPLES

BUGS
Page 109

This should be called Gevent_key and return a GT_EVENTKEY type.

SEE ALSO

Gevent_type, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window,
Gevent_picture, Gevent_device, Gevent_time.

Gevent_bstate PGL EVENT MANAGEMENT
Gevent_bstate

DEFINITION

Returns a bit mask representing which mouse buttons were pressed down
at the time of the given event.

PURPOSE

To provide a means to determine which mouse buttons went down or
are still down. On some window systems this is a faster way to detect
the release of a button that waiting for the button wentup event.

OPERATION

GT_EVENTVALUE Gevent_bstate(event)
GT_EVENT event;

Possible values for get button status are:

G_R_HELDDOWN
G_M_HELDDOWN
G_L_HELDDOWN

EXAMPLES

BUGS

GT_EVENTVALUE is probably too large a word to use for these 3 bits.

SEE ALSO

Gevent_type, Gevent_value, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window,
Gevent_picture, Gevent_device, Gevent_time.

Gevent_shiftstate PGL EVENT MANAGEMENT
Gevent_shiftstate

DEFINITION
Page 110

Returns a bit mask representing which shift keys were pressed down
at the time of the given event.

PURPOSE

To provide a means to determine which shift keys are down which may
alter the interpretation of the actual returned event. Note that
shift key events themselves are not returned at this time.

OPERATION

GT_EVENTVALUE Gevent_shiftstate(event)
GT_EVENT event;

Possible values for get shift status are:

EXAMPLES

BUGS

GT_EVENTVALUE is probably too large a word to use for these bits.

*** NOT IMPLEMENTED ***

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window,
Gevent_picture, Gevent_device, Gevent_time.

Gevent_deltadevx PGL EVENT MANAGEMENT Gevent_deltadevx

DEFINITION

Returns the X device coordinate distance the cursor has moved between
the given event
and the previous event that was read. This distance is also returned
when the cursor is locked and can be used as a method of determining
how much the cursor 'would have been moved' were it not locked.

PURPOSE

To provide a means to determine how much the cursor moved in a
coordinate system that is constant with respect to the user. I.E.
world coordinate cursor deltas vary widely depending on the actual
world bounds of the particular view the cursor is in.

OPERATION

GT_DCOORD Gevent_deltadevx(event)
Page 111

GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevy, Gevent_devx, Gevent_devy, Gevent_x, Gevent_y,
Gevent_view, Gevent_window, Gevent_picture, Gevent_device, Gevent_time.

Gevent_deltadevy PGL EVENT MANAGEMENT Gevent_deltadevy

DEFINITION

Returns the Y device coordinate distance the cursor has moved between
the given event
and the previous event that was read. This distance is also returned
when the cursor is locked and can be used as a method of determining
how much the cursor 'would have been moved' were it not locked.

PURPOSE

To provide a means to determine how much the cursor moved in a
coordinate system that is constant with respect to the user. I.E.
world coordinate cursor deltas vary widely depending on the actual
world bounds of the particular view the cursor is in.

OPERATION

GT_DCOORD Gevent_deltadevy(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_devx, Gevent_devy, Gevent_x, Gevent_y,
Gevent_view, Gevent_window, Gevent_picture, Gevent_device, Gevent_time.

Gevent_devx PGL EVENT MANAGEMENT Gevent_devx

DEFINITION

Returns the X device coordinate of the cursor when the given event
occurred.

PURPOSE
Page 112

To provide a quick and easy method of determining the position of the
cursor in device coordinates.

OPERATION

GT_DCOORD Gevent_devx(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devy, Gevent_x, Gevent_y,
Gevent_view, Gevent_window, Gevent_picture, Gevent_device, Gevent_time.

Gevent_devy PGL EVENT MANAGEMENT Gevent_devy

DEFINITION

Returns the Y device coordinate of the cursor when the given event
occurred.

PURPOSE

To provide a quick and easy method of determining the position of the
cursor in device coordinates.

OPERATION

GT_DCOORD Gevent_devy(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_x, Gevent_y,
Gevent_view, Gevent_window, Gevent_picture, Gevent_device, Gevent_time.

Gevent_x PGL EVENT MANAGEMENT Gevent_x

DEFINITION

Returns the X world coordinate of the cursor when the given event
occurred.
Page 113

PURPOSE

To provide a quick and easy method of determining the position of the
cursor in world coordinates.

OPERATION

GT_COORD Gevent_x(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_y, Gevent_view, Gevent_window, Gevent_picture, Gevent_device,
Gevent_time.

Gevent_y PGL EVENT MANAGEMENT Gevent_y

DEFINITION

Returns the Y world coordinate of the cursor when the given event
occurred.

PURPOSE

To provide a quick and easy method of determining the position of the
cursor in world coordinates.

OPERATION

GT_COORD Gevent_y(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_view, Gevent_window, Gevent_picture, Gevent_device,
Gevent_time.

Gevent_view PGL EVENT MANAGEMENT
Gevent_view
Page 114

DEFINITION

Returns the view graphic object the cursor was over when the given event
occurred.

PURPOSE

To provide a quick and easy method of determining the view of the event.

OPERATION

GT_OBJECT Gevent_view(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_window, Gevent_picture, Gevent_device,
Gevent_time.

Gevent_window PGL EVENT MANAGEMENT
Gevent_window

DEFINITION

Returns the window graphic object the cursor was over when the given
event

occurred.

PURPOSE

To provide a quick and easy method of determining the window of the
event.

OPERATION

GT_OBJECT Gevent_window(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Page 115

Gevent_x, Gevent_y, Gevent_view, Gevent_picture, Gevent_device,
Gevent_time.

Gevent_picture PGL EVENT MANAGEMENT
Gevent_picture

DEFINITION

Returns the picture graphic object the cursor was over when the given
event

occurred.

PURPOSE

To provide a quick and easy method of determining the picture of the
event.

OPERATION

GT_OBJECT Gevent_picture(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window, Gevent_device,
Gevent_time.

Gevent_device PGL EVENT MANAGEMENT
Gevent_device

DEFINITION

Returns the device graphic object the cursor was over when the given
event

occurred.

PURPOSE

To provide a quick and easy method of determining the device of the
event.

OPERATION

GT_OBJECT Gevent_device(event)
GT_EVENT event;
Page 116

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window, Gevent_picture,
Gevent_time.

Gevent_time PGL EVENT MANAGEMENT
Gevent_time

DEFINITION

Returns the time the given event occurred.

PURPOSE

To provide a quick and easy method of determining the time of the event.

OPERATION

struct gtime *Gevent_time(event)
GT_EVENT event;

EXAMPLES

BUGS

SEE ALSO

Gevent_type, Gevent_value, Gevent_bstate, Gevent_shiftstate,
Gevent_deltadevx, Gevent_deltadevy, Gevent_devx, Gevent_devy,
Gevent_x, Gevent_y, Gevent_view, Gevent_window, Gevent_picture,
Gevent_device.

Graphics Context Management

Each object has a graphics context. At this time primitives are the
only users of the their context. The context specifies what color, line width,
text font etc... to use when the primitive is drawn or picked.

void Gsetopenctx(ctx) sets the currently open context to be context ctx. By
default, every primitive inherits the currently open context which
determines it's color, etc.

GT_CTX Ggetopenctx() returns currently open context.

int Gpushopenctx(ctx) save currently open context and make ctx the open
context.
Page 117

int Gpopopenctx() restore previously pushed context.

GT_ATT Ggetctxvalue(ctx, which) returns value of context attribute 'which'.

void Gsetopenctxtype(type) set the open context type.

GT_CTXTYPE Ggetopenctxtype() returns the type of the currently open context.

GT_ATT Ggetopenctxvalue(which) returns value of open context attribute
'which'.

void Gsetopenctxvalue(which, value) sets context attribute 'which' to 'value'.

void Gsetopenctxvalues(vararglist) sets context attributes.

GT_CTXTYPE Ggetobjctxtype(obj) returns type of context associated with given
object.

GT_CTX Gsetobjctxtype(obj, type) sets type of context to be associated with
obj.

void Gsetobjctx(obj, ctx) assigns a context to object obj.

GT_CTX Ggetobjctx(obj) returns context of object obj.

GT_CTX Gsetobjctxvalue(obj, which, value) sets object's attribute 'which' to
'value'.

GT_CTX Gsetobjctxvalues(obj, vararglist) sets object's attributes.

GT_ATT Ggetobjctxvalue(obj, which) returns object's attribute value for
'which'.

GT_CTX Gmakectx(type, va_alist) combines the default ctx for the given type
and

the given attribute values and returns the resultant context.

GT_CTX Gderivectx(parentctx, va_alist) combines the parentctx context with the
given attribute values are returns the resultant context.

CONTEXT

Every object has a graphics context associated with it. Objects
inherit the context called the currently open context when they are
created. There is always an open context. There are functions provided to
access and modify various aspects of an object's context and the open
context. The open context is also associated with the currently open window
so that when (and if) the window is reopened, the open context will be set
to the context that existed when the window was previously the open window.

The context of an object is a cache of attributes to be associated
with the object. At this time all contexts contain information pertaining
to color, line width, fill, text height, text spacing, text width, font,
Page 118

write mode, fill pattern, visibility, edge color. These attributes are
all of type GT_ATT the and defaults are indicated below.

The two types of contexts currently supported differ in the number
of user attributes they have available. These are application specific and
are ignored by the graphics system itself. Context type G_CTXTYPE0 has 16
user defined attributes and G_CTXTYPE1 has only 1.

/**
System Context Default defines

**/

The various attributes are referenced using the following (as
the 'which' in the described functions).

GARG_DEFAULTS

GARG_COLOR

GARG_FILL

GARG_FILLCOLOR

Specifies the fill color if GARG_FILL is equal to
GARG_SOLID_FILL or if GARG_FILL is equal to GARG_PATTERN_FILL or
GARG_ROP_FILL and the pattern supplied has a depth of one(i.e.
monochrome).

GARG_PATTERN

There is currently two kinds of bitmaps supported (one and
eight bits deep). There is also two methods of rendering
bitmaps: filled rectangles and filled-ropped rectangles.
Filled rectangles align the pattern on the nearest byte
boundary which is an integral multiple of the width of the
pattern. This is the fastest method of rendering and is used
extensively for background patterns. Filled-ropped rectangles
align the pattern at the bottom left edge of the rectangle.
This is used to draw cursor patterns and similar 'pictures'.

Specifies the fill pattern if GARG_FILL is equal to
GARG_PATTERN_FILL or GARG_ROP_FILL. The supplied pattern is
of type GT_BITMAP.

GARG_FILLBACKCOLOR

Specifies the background color of the supplied pattern
argument to GARG_PATTERN if it is of depth equal to one(i.e.
monochrome).

GARG_LWIDTH

GARG_THEIGHT
Page 119

GARG_TSPACING

GARG_TWIDTH

GARG_TFONT

GARG_WRITEMODE

GARG_HIDDEN

#define GI_DEFAULTCOLOR1
#define GI_DEFAULTTEXTHEIGHT40000000
#define GI_DEFAULTTEXTWIDTH30000000
#define GI_DEFAULTTEXTSPACING40000000
#define GI_DEFAULTFONT0
#define GI_DEFAULTWRITEMODEG_COPYWRITEMODE
#define GI_DEFAULTFILLPATTERN0
#define GI_DEFAULTHIDE0
#define GI_DEFAULTFILLFORECOLOR1
#define GI_DEFAULTFILLBACKCOLOR0
#define GI_DEFAULTNOTIFYPROCNULL

Context Type:

The functions provided to access and modify the type of a context are:

GT_CTXTYPE Ggetobjctxtype(obj)
GT_OBJECT obj;

This function returns the type of the context
associated with object 'obj'.

void Gsetobjctxtype(obj, type)
GT_OBJECT obj;
GT_CTXTYPE type;

This function sets the type of the context
associated with object 'obj' to 'type'.

GT_CTXTYPE Ggetopenctxtype()

This function returns the type of the open context.

void Gsetopenctxtype(type)
GT_CTXTYPE type;

This function sets the type of the open context
to 'type'.
Page 120

Ggetobjctxtype PGL GRAPHIC CONTEXT SUPPORT
Ggetobjctxtype

DEFINITION

This function returns the type of the context that is associated with
the given object.

PURPOSE

Provides support for application determination of context type and size.

OPERATION

GT_CTXTYPE Ggetobjctxtype(obj)
GT_OBJECT obj;

EXAMPLES

BUGS

SEE ALSO

Gsetobjctxtype, Ggetopenctxtype, Gsetopenctxtype.

Gsetobjctxtype PGL GRAPHIC CONTEXT SUPPORT
Gsetobjctxtype

DEFINITION

This function sets the type of the context that is associated with
the given object and returns a handle to the given object's new context.

PURPOSE

Provides support for application determination of context type and size.

OPERATION

GT_CTX Gsetobjctxtype(obj, type)
GT_OBJECT obj;
GT_CTXTYPE type;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctxtype, Ggetopenctxtype, Gsetopenctxtype.
Page 121

Ggetopenctxtype PGL GRAPHIC CONTEXT SUPPORT
Ggetopenctxtype

DEFINITION

This function returns the type of the open context.

PURPOSE

Provides support for application determination of context type and size.

OPERATION

GT_CTXTYPE Ggetopenctxtype()

EXAMPLES

BUGS

SEE ALSO

Ggetobjctxtype, Gsetobjctxtype, Gsetopenctxtype.

Gsetopenctxtype PGL GRAPHIC CONTEXT SUPPORT
Gsetopenctxtype

DEFINITION

This function sets the type of the open context to be the given type.

PURPOSE

Provides support for application determination of context type and size.

OPERATION

void Gsetopenctxtype(type)
GT_CTXTYPE type;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctxtype, Gsetobjctxtype, Ggetopenctxtype.

Open Context:

The functions provided to access and modify the open context are:
Page 122

int Gpushopenctx(ctx)
GT_CTX ctx;

Makes the context 'ctx' the open context, saving the previously
open context on a stack.

int Gpopopenctx()

Makes the context that was open before the last call to
Gpushopenctx the new open context.

GT_CTX Ggetopenctx()

Returns the open context.

void Gsetopenctx(ctx)
GT_CTX ctx;

Makes the context 'ctx' the open context.

GT_ATT Ggetopenctxvalue(which)
int which;

Returns the value of the open context attribute specified
by 'which'.

void Gsetopenctxvalue(which, value)
int which;
GT_ATT value;

Modifies the open context attribute specified by 'which' and
sets it to equal 'value'. If which is set to GARG_DEFAULTS, then
all the context attributes are set to their default values.

void Gsetopenctxvalues(which, value, which, value, ..., 0)
int which;
GT_ATT value;

Modifies each open context attribute specified by 'which' and
sets it to equal 'value'. If which is set to GARG_DEFAULTS, then
all the context attributes are set to their default values.

Gpushopenctx PGL GRAPHIC CONTEXT SUPPORT
Gpushopenctx

DEFINITION

Makes the given context the open context, saving the previously open
context on an internal stack. A nonzero value is returned on stack
overflow error (i.e. the stack is not large enough for all the pushed
contexts).
Page 123

PURPOSE

Provides an easy way to temporarily change the open context.

OPERATION

int Gpushopenctx(ctx)
GT_CTX ctx;

EXAMPLES

BUGS

There is only a finite amount of internal stack space (room for
approximately 20 entries).

SEE ALSO

Gpopopenctx, Ggetopenctx, Gsetopenctx, Ggetopenctxvalue,
Gsetopenctxvalue, Gsetopenctxvalues.

Gpopopenctx PGL GRAPHIC CONTEXT SUPPORT Gpopopenctx

DEFINITION

Restores the previously open context that was open before the last
call to Gpushopenctx as the new open context. A nonzero value is
returned on stack underflow (i.e. there are currently no contexts pushed
on the internal stack to pop off).

PURPOSE

Provides an easy way to temporarily change the open context.

OPERATION

int Gpopopenctx()

EXAMPLES

BUGS

There is only a finite amount of internal stack space (room for
approximately 20 entries).

SEE ALSO

Gpushopenctx, Ggetopenctx, Gsetopenctx, Ggetopenctxvalue,
Gsetopenctxvalue, Gsetopenctxvalues.

Ggetopenctx PGL GRAPHIC CONTEXT SUPPORT Ggetopenctx
Page 124

DEFINITION

Returns the handle of the currently open context.

PURPOSE

Provides an method to get the currently open context which will be
assigned to all objects that are made while it is open.

OPERATION

GT_CTX Ggetopenctx()

EXAMPLES

BUGS

SEE ALSO

Gpushopenctx, Gpopopenctx, Gsetopenctx, Ggetopenctxvalue,
Gsetopenctxvalue, Gsetopenctxvalues.

Gsetopenctx PGL GRAPHIC CONTEXT SUPPORT Gsetopenctx

DEFINITION

Sets the currently open context to the given context.

PURPOSE

To set the open graphic context, which is the context assigned to
all graphic objects when they are created, to the given, application
specified context. This way the application specifies the color, line
width, etc. attribute defaults to objects it will then create. The
application then changes the open context if it wants to change one or
more of the default attributes which are being assigned to new created
objects.

OPERATION

void Gsetopenctx(ctx)
GT_CTX ctx;

EXAMPLES

BUGS

SEE ALSO

Gsetobjctxvalue, Gpushopenctx, Gpopopenctx, Ggetopenctx,
Ggetopenctxvalue, Gsetopenctxvalue, Gsetopenctxvalues.
Page 125

Ggetopenctxvalue PGL GRAPHIC CONTEXT SUPPORT
Ggetopenctxvalue

DEFINITION

Returns the value of the attribute in the open graphic context as
specified by the given attribute keyword 'which'.

PURPOSE

To provide a method by which the application may determine the value of
an attribute which is being assigned to all graphic objects when they
are created.

OPERATION

GT_ATT Ggetopenctxvalue(which)
int which;

EXAMPLES

BUGS

SEE ALSO

Gsetobjctxvalue, Gpushopenctx, Gpopopenctx, Ggetopenctx, Gsetopenctx,
Gsetopenctxvalue, Gsetopenctxvalues.

Gsetopenctxvalue PGL GRAPHIC CONTEXT SUPPORT
Gsetopenctxvalue

DEFINITION

Sets the value of the attribute in the open graphic context as
specified by the given attribute keyword 'which' , and the given value.

PURPOSE

To provide a method by which the application may set the value of
an attribute which is being assigned to all graphic objects when they
are created.

OPERATION

void Gsetopenctxvalue(which, value)
int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO
Page 126

Gsetobjctxvalue, Gpushopenctx, Gpopopenctx, Ggetopenctx, Gsetopenctx,
Ggetopenctxvalue, Gsetopenctxvalues.

Gsetopenctxvalues PGL GRAPHIC CONTEXT SUPPORT
Gsetopenctxvalues

DEFINITION

Sets the values of the attributes in the open graphic context as
specified by the given attribute keywords and the given values as
listed in the variable argument list.

PURPOSE

To provide a method by which the application may set the multiple values
of the attributes which are being assigned to all graphic objects when
they are created. This function is faster than multiple calls to
Gsetopenctxvalue.

OPERATION

void Gsetopenctxvalues(which, value, which, value, ..., 0)
int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO

Gsetobjctxvalue, Gpushopenctx, Gpopopenctx, Ggetopenctx, Gsetopenctx,
Ggetopenctxvalue, Gsetopenctxvalue.

Object Context:

GT_CTX Ggetobjctx(obj)
GT_OBJECT obj;

Returns the context of the object 'obj'.

void Gsetobjctx(obj, ctx)
GT_OBJECT obj;
GT_CTX ctx;

Changes the object 'obj's context to be context 'ctx'.

GT_ATT Ggetobjctxvalue(obj, which)
GT_OBJECT obj;
int which;
Page 127

Returns the value of the object 'obj's context attribute
specified by 'which'.

GT_CTX Gsetobjctxvalue(obj, which, value)
GT_OBJECT obj;
int which;
GT_ATT value;

Set the value of the object 'obj's context attribute
specified by 'which' to equal 'value'. If which is set to
GARG_DEFAULTS, then all the context attributes are set to their
default values.

GT_CTX Gsetobjctxvalues(obj, which, value, which, value, ..., 0)
GT_OBJECT obj;
int which;
GT_ATT value;

Set the each value of the object 'obj's context attribute
specified by 'which' to equal 'value'. If which is set to
GARG_DEFAULTS, then all the context attributes are set to their
default values.

Ggetobjctx PGL GRAPHIC CONTEXT SUPPORT
Ggetobjctx

DEFINITION

Returns the handle of the graphic context currently associated with the
given object.

PURPOSE

To provide a method by which the application may determine the context
of a given object.

OPERATION

GT_CTX Ggetobjctx(obj)
GT_OBJECT obj;

EXAMPLES

BUGS

SEE ALSO

Gsetobjctx, Ggetobjctxvalue, Gsetobjctxvalue, Gsetobjctxvalues.
Page 128

Gsetobjctx PGL GRAPHIC CONTEXT SUPPORT
Gsetobjctx

DEFINITION

Sets the graphic context of the given object to be the given context.

PURPOSE

To provide a method by which the application may assign the context
of a given object.

OPERATION

void Gsetobjctx(obj, ctx)
GT_OBJECT obj;
GT_CTX ctx;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctx, Ggetobjctxvalue, Gsetobjctxvalue, Gsetobjctxvalues.

Ggetobjctxvalue PGL GRAPHIC CONTEXT SUPPORT
Ggetobjctxvalue

DEFINITION

Returns the value of the attribute specified by the given keyword
'which' in the graphic context of the given object.

PURPOSE

To provide a method by which the application may determine the value
of an attribute of a given object. I.E. use this function to determine
what color a given object is.

OPERATION

GT_ATT Ggetobjctxvalue(obj, which)
GT_OBJECT obj;
int which;

EXAMPLES

BUGS

SEE ALSO
Page 129

Ggetobjctx, Gsetobjctx, Gsetobjctxvalue, Gsetobjctxvalues.

Gsetobjctxvalue PGL GRAPHIC CONTEXT SUPPORT
Gsetobjctxvalue

DEFINITION

Sets the value of the attribute specified by the given keyword
'which' in the graphic context of the given object to the given value.

PURPOSE

To provide a method by which the application may assign the value of
an attribute of a given object. I.E. use this function to assign a
color to a given object.

OPERATION

GT_CTX Gsetobjctxvalue(obj, which, value)
GT_OBJECT obj;
int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctx, Gsetobjctx, Ggetobjctxvalue, Gsetobjctxvalues.

Gsetobjctxvalues PGL GRAPHIC CONTEXT SUPPORT
Gsetobjctxvalues

DEFINITION

Sets the values of the attributes specified by the given keywords
in the graphic context of the given object to the given values.

PURPOSE

To provide a method by which the application may assign the values of
multiple attributes of a given object. Using this function to assign
multiple values to an object's context is faster than multiple calls to
Gsetobjctxvalue.

OPERATION

GT_CTX Gsetobjctxvalues(obj, which, value, which, value, ..., 0)
GT_OBJECT obj;
Page 130

int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctx, Gsetobjctx, Ggetobjctxvalue, Gsetobjctxvalues.

Given a Context:

GT_ATT Ggetctxvalue(ctx, which)
GT_CTX ctx;
int which;

Returns the value of the context 'ctx's attribute specified
by 'which'.

GT_CTX Gmakectx(type, which, value, which, value,...,0)
GT_CTXTYPE type;
int which;
GT_ATT value;

Returns the handle of the graphic context of the given type
combining the defaults for the type and the specified attribute
values.

GT_CTX Gderivectx(parentctx, which, value, which, value,...,0)
GT_CTX parentctx;
int which;
GT_ATT value;

Returns the handle of the graphic context of the result of
combining the parentctx and the specified attribute values.

Ggetctxvalue PGL GRAPHIC CONTEXT SUPPORT Ggetctxvalue

DEFINITION

Returns the value of the attribute specified by the given keyword
in the given graphic context.

PURPOSE

To provide a method by which the application may determine the value of
an attribute of a given context.

OPERATION
Page 131

GT_ATT Ggetctxvalue(ctx, which)
GT_CTX ctx;
int which;

EXAMPLES

BUGS

SEE ALSO

Ggetobjctxvalue.

Gmakectx PGL GRAPHIC CONTEXT SUPPORT Gmakectx

DEFINITION

Makes a context out of the defaults for the given context type and the
given attribute values and returns a handle to it.

PURPOSE

To provide a method by which the application may create graphic contexts
without touching the open context.

OPERATION

GT_CTX Gmakectx(type, which, value, which, value,...,0)
GT_CTXTYPE type;
int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO

Gderivectx.

Gderivectx PGL GRAPHIC CONTEXT SUPPORT
Gderivectx

DEFINITION

Makes a context out of the values of the attributes of the given
context and the given attribute values and returns a handle to it.

PURPOSE
Page 132

To provide a method by which the application may create graphic contexts
without touching the open context. GARG_DEFAULTS is a valid keyword and
makes this function very similar to Gmakectx except that the context
type is determined implicitly from the given context.

OPERATION

GT_CTX Gderivectx(parentctx, which, value, which, value,...,0)
GT_CTX parentctx;
int which;
GT_ATT value;

EXAMPLES

BUGS

SEE ALSO

Gmakectx.

 PGL TAG MANAGEMENT

Similar to the graphical context associated with every object there
is an ID or tag value also associated with every object. There is likewise
an open tag value that is assigned objects when the are created. There are
functions to access and modify the open tag as well as an objects tag value.
However the open tag is not associated with the open window and is simply a
graphics system state. Note that the taglo and taghi functions assume the tag
to be a long word.

The application may use this value to identify an object or to provide
specific information about the object (i.e. it could be a pointer to data
associated with the object, though the user attributes in the graphic context
can also be used for this). The search functions are provided to search
rapidly
for objects with specified tag values.

The functions provided follow. A Brief description:

Gsetopentag(tag) sets currently open tag value to tag. By default, all objects
receive a tag value equal to the currently open tag value.

GT_TAG Ggetopentag() returns currently open tag value.

Gsettag(obj, tag) set object obj's tag value to equal tag.

GT_TAG Ggettag(obj) returns object obj's tag value.

Gsettaghi(obj, tag) set 'high' half of tag value of object.

Gsettaglo(obj, tag) set 'low' half of tag value of object.

GT_INT16 Ggettaghi(obj) returns 'high' half of tag value of object.

GT_INT16 Ggettaglo(obj) returns 'low' half of tag value of object.
Page 133

Gsetopentag PGL TAG MANAGEMENT
Gsetopentag

DEFINITION

Sets the current open tag to equal the given value.

PURPOSE

To set subsequently created object's tag values to the given value.

OPERATION

void Gsetopentag(tag)
GT_TAG tag;

EXAMPLES

BUGS

SEE ALSO

Ggetopentag, Gsettag, Ggettag, Gsettaghi, Ggettaghi, Gsettaglo,
Ggettaglo.

Ggetopentag PGL TAG MANAGEMENT
Ggetopentag

DEFINITION

Returns the value of the current open tag.

PURPOSE

To determine the value of the tag which will be assigned to
subsequently created objects.

OPERATION

GT_TAG Ggetopentag()

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Gsettag, Ggettag, Gsettaghi, Ggettaghi, Gsettaglo,
Ggettaglo.
Page 134

Gsettag PGL TAG MANAGEMENT
Gsettag

DEFINITION

Assigns the given value to the tag of the given object.

PURPOSE

To change the value of the tag of an object.

OPERATION

void Gsettag(obj, tag)
GT_OBJECT obj;
GT_TAG tag;

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Ggetopentag, Ggettag, Gsettaghi, Ggettaghi, Gsettaglo,
Ggettaglo.

Ggettag PGL TAG MANAGEMENT
Ggettag

DEFINITION

Returns the value of the tag of the given object.

PURPOSE

To inquire the value of the tag of an object.

OPERATION

GT_TAG Ggettag(obj)
GT_OBJECT obj;

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Ggetopentag, Gsettag, Gsettaghi, Ggettaghi, Gsettaglo,
Ggettaglo.
Page 135

Gsettaghi PGL TAG MANAGEMENT
Gsettaghi

DEFINITION

Assigns the given value to the high shortword of the tag of the given
object.

PURPOSE

To provide an standard method to treat the tag value as two separate
values.

OPERATION

void Gsettaghi(obj, tag)
GT_OBJECT obj;
GT_INT16 tag;

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Ggetopentag, Gsettag, Ggettag, Ggettaghi, Gsettaglo,
Ggettaglo.

Ggettaghi PGL TAG MANAGEMENT
Ggettaghi

DEFINITION

Returns the value of the high shortword of the tag of the given
object.

PURPOSE

To provide an standard method to treat the tag value as two separate
values.

OPERATION

GT_INT16 Ggettaghi(obj)
GT_OBJECT obj;

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Ggetopentag, Gsettag, Ggettag, Gsettaghi, Gsettaglo,
Page 136

Ggettaglo.

Gsettaglo PGL TAG MANAGEMENT
Gsettaglo

DEFINITION

Assigns the given value to the low shortword of the tag of the given
object.

PURPOSE

To provide an standard method to treat the tag value as two separate
values.

OPERATION

void Gsettaglo(obj, tag)
GT_OBJECT obj;
GT_INT16 tag;

EXAMPLES

BUGS

SEE ALSO

Gsetopentag, Ggetopentag, Gsettag, Ggettag, Gsettaghi, Ggettaghi,
Ggettaglo.

Ggettaglo PGL TAG MANAGEMENT
Ggettaglo

DEFINITION

Returns the value of the low shortword of the tag of the given
object.

PURPOSE

To provide an standard method to treat the tag value as two separate
values.

OPERATION

GT_INT16 Ggettaglo(obj)
GT_OBJECT obj;

EXAMPLES

BUGS
Page 137

SEE ALSO

Gsetopentag, Ggetopentag, Gsettag, Ggettag, Gsettaghi, Ggettaghi,
Gsettaglo.

 PGL DATA SEARCH OPERATIONS

void Gpickstate(pickflags, xmin, ymin, xmax, ymax) set criteria for subsequent
picks.

int Gpushpickstate(pickflags, xmin, ymin, xmax, ymax) setup new pick state,
saving previous on limited size stack.

int Gpoppickstate() restore previous pick state.

GT_OBJECT Gpick(object) find object matching pick criteria.

int Gpickobj(obj) inquire wether object obj matches pick criteria.

void Gsearchstate(flags, method, scope, action, values, destobj) setup
criteria

for search and actions.

int Gpushsearchstate(flags, method, scope, action, values, destobj) setup new
search state, saving old on limited size stack.

int Gpopsearchstate() restore previous search state.

GT_OBJECT Gsearch(obj) traverse obj, performing action on objects matching
 search criteria.

int Gsearchobject(obj) inquire wether object obj matches search criteria.

GT_OBJECT Gtraverse(object, proc) traverse object according to search state
and execute procedure 'proc' whenever an object is encountered.

GT_OBJECT Ggetnextobjectwithname(type, object, name) find object of given
type

having given name.

Gpick PGL DATA SEARCH OPERATIONS Gpick

DEFINITION

Searches the specified graphic object(s) for an object overlapping and/
or contained in the pick state extrema. Returns the handle of
the object satisfying the criteria or returns NULL.

OPERATION

GT_OBJECT Gpick(object)
Page 138

GT_OBJECT object;

PRIMITIVES

This function searches for primitives that match the dimensional
criteria specified in the pick state starting at the primitive
following the given primitive 'object'. If G_SEARCHDOWN is
specified in the pick state then the search will go down into
the segments that are invoked by the call primitive. If
G_SEARCHACROSSSEGMENTS is specified in the pick state, then
upon reaching the end of the given primitive object's segment,
the next segment in the internal list of segments will be
searched.

SEGMENTS

(1) If the G_SEARCHDOWN bit is set in the pick state:
This function searches for primitives that match the dimensional
criteria specified in the pick state starting at the given
segment's first primitive.
If no such primitive is found matching the pick criteria then:

(2) If G_SEARCHACROSSSEGMENTS bit is set in the pick state:
This function searches for segments that match the dimensional
criteria specified in the pick state starting at the segment
following the given primitive 'object'. If the segment is itself
a primitive in another segment the search will first search for
primitives in the segment's parent segment starting at the
primitive following the given segment. If no such primitive
is found matching the pick criteria then the search continues
with segments following the parent segment.

(3) Else the handle of the given segment object is returned
if it matches the pick state criteria else NULL is returned.
I.E. a Gpickobj is preformed on the given segment.

WINDOWS

(1) If the G_SEARCHDOWN bit is set in the pick state:
This function picks the segments in the view graphic objects
in the pictures that have been associated with the given window.
See segment pick.

(3) Else NULL is returned.

VIEWS

(1) If the G_SEARCHDOWN bit is set in the pick state:
This function picks the segment in the given view graphic
object. See segment pick.
If no such primitive is found matching the pick criteria then:

(2) If G_SEARCHACROSSVIEWS bit is set in the pick state:
This function searches for segments that match the dimensional
Page 139

criteria specified in the pick state starting at the segment of
the view following the given view 'object'. If the view is a
subview of another view object the search will first examine the
subviews and then continue with the view following the parent
view of the given view object.

(3) Else the handle of the given view object is returned
if it matches the pick state criteria else NULL is returned.
I.E. a Gpickobj is preformed on the given view.

PICTURES

This function performs a pick on the view graphic object
associated with the given picture.

SYMBOLIC PICTURES

This function performs a pick on the each picture object
represented by the given symbolic picture.

DEVICES

(1) If the G_SEARCHDOWN bit is set in the pick state:
This function picks the segments in the view graphic objects
in the pictures that have been associated with the given device.
See segment pick.

(3) Else NULL is returned.

EXAMPLES

BUGS

The flag G_SEARCHACROSSWINDOWS not implemented.
The flag G_CONTAINED is not implemented.

SEE ALSO

Gpickobj, Gpickstate, Gpushpickstate, Gpoppickstate.

Gpickobj PGL DATA SEARCH OPERATIONS
Gpickobj

DEFINITION

Tests the specified graphic object to see if it is overlapping and/
or contained in the pick state extrema and returns TRUE if it is,
FALSE if not.

OPERATION

int Gpickobj(object)
GT_OBJECT object;
Page 140

PRIMITIVES

This function returns a non-zero value if the primitive
extrema intersects the pick state extrema. Otherwise zero
is returned.

SEGMENTS

This function returns a non-zero value if the segment
extrema intersects the pick state extrema. Otherwise zero
is returned.

WINDOWS

This function is undefined for window graphic objects.

VIEWS

This function returns a non-zero value if the view's world
area extrema intersects the pick state extrema. Otherwise zero
is returned.

PICTURES

This function returns a non-zero value if the picture's device
area extrema intersects the pick state extrema. Otherwise zero
is returned. Note this compares what is usually world
coordinates in the pick state extrema against device
coordinates.

SYMBOLIC PICTURES

This function is undefined for symbolic pictures.

DEVICES

This function returns a non-zero value if the device's
physical extrema intersects the pick state extrema. Otherwise
zero is returned. Note this compares what is usually world
coordinates in the pick state extrema against device
coordinates.

EXAMPLES

BUGS

The flag G_CONTAINED is not implemented.

SEE ALSO

Gpick, Gpickstate, Gpushpickstate, Gpoppickstate.
Page 141

Gpickstate PGL DATA SEARCH OPERATIONS
Gpickstate

DEFINITION

Configures the pick state used by the picking functions Gpick() and
Gpickobj().

OPERATION

void Gpickstate(pickflags, xmin, ymin, xmax, ymax)
int pickflags;
GT_COORD xmin, ymin, xmax, ymax;

int pickflags

The pickflags specify how the pick state extrema is compared
with, as well as the method of traversal of, the graphic data
which is supplied as parameters to Gpick() and Gpickobj().
The pick criteria refers to the particular conditions that
must be satisfied to result in a successful pick.

 -Methods for comparing an object extrema against the pick state
extrema.

G_INTERSECT The pick criteria is satisfied when
a graphic object intersects the pick
state extrema.

G_CONTAINED The pick criteria is satisfied when
a graphic object is contained in the
pick state extrema.

 -Methods for traversing the graphic data.

G_SEARCHDOWNIf, while traversing the graphic data,
a segment or call primitive is
encountered, then the primitives inside
the segment or the primitives invoked
by the call will be traversed. I.E. the
search traverses every branch off a
node testing each leaf against the pick
criteria.

G_SEARCHACROSSSEGMENTSThe traversal of data will continue with
the segments following the current if
the current fails the pick criteria. If
the pick started at the primitive level
and all the primitives in the particular
segment failed the pick criteria, then
the next segment following their parent
will be picked.
Page 142

G_SEARCHACROSSVIEWS The traversal of data will continue with
the views following the current if
the current fails the pick criteria.

G_SEARCHACROSSWINDOWS The traversal of data will continue with
the windows following the current if
the current fails the pick criteria.

GT_COORD xmin, ymin, xmax, ymax;

These world coordinate parameters specify the lower left hand
corner and upper right hand corner of the pick state extrema.

EXAMPLES

BUGS

The flag G_SEARCHACROSSWINDOWS not implemented.
The flag G_CONTAINED is not implemented.

SEE ALSO

Gpick, Gpickobj, Gpushpickstate, Gpoppickstate.

Gpushpickstate PGL DATA SEARCH OPERATIONS
Gpushpickstate

DEFINITION

Configures the pick state used by the picking functions Gpick() and
Gpickobj() while saving the previous pick state on an internal stack.

OPERATION

int Gpushpickstate(pickflags, xmin, ymin, xmax, ymax)
int pickflags;
GT_COORD xmin, ymin, xmax, ymax;

Returns non-zero value if internal stack has overflowed.

BUGS

The internal stack is limited in size (allows ~10 pushes at this time).

SEE ALSO

Gpick, Gpickobj, Gpickstate, Gpoppickstate.

Gpoppickstate PGL DATA SEARCH OPERATIONS Gpoppickstate

DEFINITION
Page 143

Configures the pick state used by the picking functions Gpick() and
Gpickobj() by restoring the pick state that existed previous to the
last Gpushpickstate() function call.

OPERATION

int Gpoppickstate()

Returns non-zero value if internal stack has underflowed.

BUGS

The internal stack is limited in size (allows ~10 pushes at this time).

SEE ALSO

Gpick, Gpickobj, Gpickstate, Gpushpickstate.

Gsearch PGL DATA SEARCH OPERATIONS
Gsearch

DEFINITION

Searches the specified graphic object(s) for an object satisfying the
search criteria specified in the search state. Returns the handle of
the object satisfying the criteria or returns NULL.

OPERATION

GT_OBJECT Gsearch(object)
GT_OBJECT object;

PRIMITIVES

This function searches for primitives that match the search
criteria specified in the pick state starting at the primitive
following the given primitive 'object'. If G_SEARCHDOWN is
specified in the search state then the search will go down into
the segments that are invoked by the call primitive. If
G_SEARCHACROSSSEGMENTS is specified in the search state, then
upon reaching the end of the given primitive object's segment,
the next segment in the internal list of segments will be
searched.

SEGMENTS

(1) If the G_SEARCHDOWN bit is set in the search state:
This function searches for primitives that match the dimensional
criteria specified in the search state starting at the given
segment's first primitive.
If no such primitive is found matching the search criteria then:

(2) If G_SEARCHACROSSSEGMENTS bit is set in the search state:
Page 144

This function searches for segments that match the dimensional
criteria specified in the search state starting at the segment
following the given primitive 'object'. If the segment is itself
a primitive in another segment the search will first search for
primitives in the segment's parent segment starting at the
primitive following the given segment. If no such primitive
is found matching the search criteria then the search continues
with segments following the parent segment.

(3) Else the handle of the given segment object is returned
if it matches the search state criteria else NULL is returned.
I.E. a Gsearch is preformed on the given segment.

WINDOWS

(1) If the G_SEARCHDOWN bit is set in the search state:
This function search the segments in the view graphic objects
in the pictures that have been associated with the given window.
See segment search.

(3) Else NULL is returned.

VIEWS

(1) If the G_SEARCHDOWN bit is set in the search state:
This function search the segment in the given view graphic
object. See segment search.
If no such primitive is found matching the search criteria then:

(2) If G_SEARCHACROSSVIEWS bit is set in the search state:
This function searches for segments that match the dimensional
criteria specified in the search state starting at the segment of
the view following the given view 'object'. If the view is a
subview of another view object the search will first examine the
subviews and then continue with the view following the parent
view of the given view object.

(3) Else the handle of the given view object is returned
if it matches the search state criteria else NULL is returned.
I.E. a Gsearch is preformed on the given view.

PICTURES

This function performs a search on the view graphic object
associated with the given picture.

SYMBOLIC PICTURES

This function performs a search on the each picture object
represented by the given symbolic picture.

DEVICES

(1) If the G_SEARCHDOWN bit is set in the search state:
Page 145

This function search the segments in the view graphic objects
in the pictures that have been associated with the given device.
See segment search.

(3) Else NULL is returned.

EXAMPLES

BUGS

The flag G_SEARCHACROSSWINDOWS not implemented.

SEE ALSO

Gsearchobj, Gsearchstate, Gpushsearchstate, Gpopsearchstate, Gtraverse,
Ggetnextobjectwithname.

Gsearchobj PGL DATA SEARCH OPERATIONS
Gsearchobj

DEFINITION

Tests the specified graphic object to see if it satisfies the criteria
specified in the search state and returns TRUE if it is, FALSE if not.

OPERATION

int Gsearchobj(object)
GT_OBJECT object;

PRIMITIVES

This function returns a non-zero value if the primitive
satisfies the search state criteria. Otherwise zero is returned.

SEGMENTS

This function returns a non-zero value if the segment satisfies
the search state criteria. Otherwise zero is returned.

WINDOWS

This function returns a non-zero value if the window satisfies
the search state criteria. Otherwise zero is returned.

VIEWS

This function returns a non-zero value if the view satisfies
the search state criteria. Otherwise zero is returned.

PICTURES

This function returns a non-zero value if the picture satisfies
Page 146

the search state criteria. Otherwise zero is returned.

SYMBOLIC PICTURES

This function returns a non-zero value if the symbolic picture
satisfies the search state criteria. Otherwise zero is returned.

DEVICES

This function returns a non-zero value if the device satisfies
the search state criteria. Otherwise zero is returned.

EXAMPLES

BUGS

SEE ALSO

Gsearch, Gsearchstate, Gpushsearchstate, Gpopsearchstate, Gtraverse,
Ggetnextobjectwithname.

Gsearchstate PGL DATA SEARCH OPERATIONS
Gsearchstate

DEFINITION

Configures the search state used by the searching functions Gsearch()
and Gsearchobj(). The search state consists of the search criteria
(referring to the particular conditions that an object must satisfy to
result in a TRUE match) and the actions to take when an object
satisfies the criteria.

OPERATION

Gsearchstate(flags, method, scope, action, values, destobj)
int flags, method, action, scope;
char *values;
GT_OBJECT destobj;

int flags

The flags specify the method of traversal of the graphic data
which is supplied as parameters to Gsearch().

 -Methods for traversing the graphic data.

G_SEARCHDOWNIf, while traversing the graphic data,
a segment or call primitive is
encountered, then the primitives inside
the segment or the primitives invoked
by the call will be traversed. I.E. the
search traverses every branch off a
node testing each leaf against the pick
Page 147

criteria.

G_SEARCHACROSSSEGMENTSThe traversal of data will continue with
the segments following the current if
the current fails the pick criteria. If
the pick started at the primitive level
and all the primitives in the particular
segment failed the pick criteria, then
the next segment following their parent
will be picked.

G_SEARCHACROSSVIEWS The traversal of data will continue with
the views following the current if
the current fails the pick criteria.

G_SEARCHACROSSWINDOWS The traversal of data will continue with
the windows following the current if
the current fails the pick criteria.

int method

 -Methods for comparing object(s) against the given 'values'
parameter of the search state.

G_FINDTAGTreat 'values' as a (GT_TAG *) and compare the
object's tag with it. The search criteria is
satisfied if the two are equal. I.E.

Ggettag(object) == *(GT_TAG *)values

G_FINDTYPE Treat 'values' as a (GT_TYPE *) and compare the
object's type with it. The search criteria is
satisfied if the two are equal. I.E.

Ggettype(object) == *(GT_TYPE *)values

G_FINDATTRIBUTE Treat 'values' as a (GT_TYPE *) followed by
(GT_ATT)'s and compare the object's particular
context attribute(s) with it. The search
criteria is satisfied if the two are equal. I.E.

Ggetobjctxvalue(object, *(GT_TYPE *)values) == *(GT_ATT *)((GT_TYPE
*)values+1)

so that 'values' is a pointer to 'which'
attribute in the context is to be compared
followed by one or more desired 'values' of
this attribute.

G_FINDCTX Treat 'values' as a (GT_CTX *) and compare the
object's type with it. The search criteria is
satisfied if the two are equal. I.E.

Ggetobjctx(object) == *(GT_CTX *)values

int action
Page 148

 -Action(s) to execute when a object is found that matches the
search criteria.

G_DOCUT Remove the object from it's present list and
add it the search state's destobj object.
In essence this does a Gexcise(object) then a
Gappend(object, destobj).

G_DOCOPYMake a copy of the object and add it to the
search state's destobj object. In essence this
does a newobj = Gcopy(object) then a
Gappend(newobj, destobj).

G_DODELETEDeletes the object.

G_DONOTHINGReturns the handle of the object that satisfies
the search criteria to the caller of Gsearch().

int scope

 -How to interpret the data that the given 'values' search state
parameter points to.

G_ONEVALUEThere is only one value to compare against
each candidate graphic object.

G_RANGEVALUESThere is a range of values to compare against
each candidate graphic object. I.E. the maximum
of the range follows the minimum which is
pointed to by the search state 'values' pointer
and the candidate object satisfies the criteria if
the object value is >= the minimum of the range
and <= the maximum of the range.

G_ARRAYVALUESThere are a multitude of values to compare
against each candidate graphic object. In this
case the scope parameter is a number >= 2
which represents the number of values to compare
against each object and the search state
'values' parameter is a pointer to the list of
values.

char *values;

 -The values to compare against each object during the search.
The values are interpreted differently according to the other
parameters described above.

GT_OBJECT destobj;

 -The destination graphic object to use with some of the
predefined (canned) actions.
Page 149

EXAMPLES

BUGS

The flag G_SEARCHACROSSWINDOWS not implemented.

SEE ALSO

Gsearch, Gsearchobj, Gpushsearchstate, Gpopsearchstate, Gtraverse,
Ggetnextobjectwithname.

Gpushsearchstate PGL DATA SEARCH OPERATIONS
Gpushsearchstate

DEFINITION

Configures the search state used by the searching functions Gsearch()
and Gsearchobj() while saving the previous search state on an internal
stack.

OPERATION

int Gpushsearchstate(flags, method, scope, action, values, destobj)
int flags, method, action, scope;
char *values;
GT_OBJECT destobj;

Returns non-zero value if internal stack has overflowed.

EXAMPLES

BUGS

The internal stack is limited in size (allows ~10 pushes at this time).

SEE ALSO

Gsearch, Gsearchobj, Gsearchstate, Gpopsearchstate, Gtraverse,
Ggetnextobjectwithname.

Gpopsearchstate PGL DATA SEARCH OPERATIONS
Gpopsearchstate

DEFINITION

Configures the search state used by the searching functions Gsearch()
and Gsearchobj() by restoring the search state that existed previous
to the last Gpushsearchstate() function call.

OPERATION

int Gpopsearchstate()
Page 150

Returns non-zero value if internal stack has underflowed.

EXAMPLES

BUGS

The internal stack is limited in size (allows ~10 pushes at this time).

SEE ALSO

Gsearch, Gsearchobj, Gsearchstate, Gpushsearchstate, Gtraverse,
Ggetnextobjectwithname.

Gtraverse PGL DATA SEARCH OPERATIONS Gtraverse

DEFINITION

Traverses graphic objects exactly like function Gsearch() and calls
the given procedure 'proc' with each graphic object as it is
encountered. This allows the application to implement it's own version
of Gsearch().

OPERATION

GT_OBJECT Gtraverse(object, proc)
GT_OBJECT object;
int (*proc)(GT_OBJECT obj);

object

Graphic object at start of objects to traverse.

int (*proc)(GT_OBJECT obj);

Procedure called for every graphic object traversed. If
a non-zero value is returned from this procedure then
the search is stopped and the current object is returned
to the caller of Gtraverse().

EXAMPLES

static int draw_selected_objects(obj)
GT_OBJECT obj;

{
/* if object matches the search criteria... */
if (Gsearchobj(obj))

{
/* ...draw it */
Gdraw(obj);
}

/* force continuous search */
return(0);
Page 151

}
void draw_text(seg)
GT_OBJECT seg;

{
GT_TYPE texttype = GO_TEXT;

Gpushsearchstate(
/* flags */
G_SEARCHDOWN,
/* method */
G_FINDTYPE,
/* scope */
G_ONEVALUE,
/* action */
G_DONOTHING,/* ignored anyway */
/* values */
(char *)&texttype,
/* destobj */
NULL); /* ignored anyway */

Gtraverse(seg, draw_selected_objects);
Gpopsearchstate();
}

BUGS

SEE ALSO

Gsearch, Gsearchobj, Gsearchstate, Gpushsearchstate, Gpopsearchstate,
Ggetnextobjectwithname.

Ggetnextobjectwithname PGL DATA SEARCH OPERATIONS
Ggetnextobjectwithname

DEFINITION

Traverses internal list of graphic objects searching for an object of
the given type having the given name.

OPERATION

GT_OBJECT Ggetnextobjectwithname(type, object, name)
GT_TYPE type;
GT_OBJECT object;
char *name;

type

The type of graphics object desired.
object

Graphic object preceding the first graphic object to
Page 152

have it's name compared with the given name. If
this is NULL, then the search starts at the beginning
of the list.

name

The ASCII text name.

PRIMITIVES

This function is undefined for these graphic objects.

SEGMENTS

This function returns the next segment following the given
segment with it's name the same as the given name.

WINDOWS

This function returns the next window following the given
window with it's name the same as the given name.

VIEWS

This function returns the next view following the given
view with it's name the same as the given name.

PICTURES

This function is undefined for these graphic objects.

SYMBOLIC PICTURES

This function is undefined for these graphic objects.

DEVICES

This function returns the next device following the given
device with it's name the same as the given name.

BUGS

SEE ALSO

Gsearch, Gsearchobj, Gsearchstate, Gpushsearchstate, Gpopsearchstate.

Gpanview PGL TRANSFORMS SUPPORT Gpanview

DEFINITION

Translates the given view graphic object's world coordinate viewpoint.
Page 153

PURPOSE

To provide an optimized world coordinate translation for view graphic
objects. This is faster than a Gmodview() function call. This
translation is essentially a pan without the redraw of the graphic
data associated with the view.

OPERATION

void Gpanview(view, dx, dy)
GT_OBJECT view;
GT_COORD dx, dy;

EXAMPLES

BUGS

SEE ALSO

Gvctodc PGL TRANSFORMS SUPPORT Gvctodc

DEFINITION

Converts a viewport coordinate to a device coordinate for the given
picture.

PURPOSE

To provide a portable method by which the application may determine
actual device coordinates from viewport coordinates. This routine uses
the picture's view, window, and device to calculate the desired values.

OPERATION

void Gvctodc(picture, vx, vy, dx, dy)
GT_OBJECT picture;
GT_VCOORD vx, vy;
GT_DCOORD *dx, *dy;

EXAMPLES

BUGS

SEE ALSO

Gdctovc, Gvtoddelta, Gdtovdelta.

Gdctovc PGL TRANSFORMS SUPPORT Gdctovc
Page 154

DEFINITION

Converts a device coordinate to a viewport coordinate for the given
picture.

PURPOSE

To provide a portable method by which the application may determine
viewport coordinates from actual device coordinates. This routine uses
the picture's view, window, and device to calculate the desired values.

OPERATION

void Gdctovc(picture, dx, dy, vx, vy)
GT_OBJECT picture;
GT_DCOORD dx, dy;
GT_VCOORD *vx, *vy;

EXAMPLES

BUGS

SEE ALSO

Gvctodc, Gvtoddelta, Gdtovdelta.

Gvtoddelta PGL TRANSFORMS SUPPORT Gvtoddelta

DEFINITION

Converts a viewport coordinate distance to a device coordinate distance
for the given picture.

PURPOSE

To provide a portable method by which the application may determine
device coordinate differences from actual viewport coordinate
differences. This routine uses the picture's view, window, and device
to calculate the desired values.

OPERATION

void Gvtoddelta(picture, vx, vy, dx, dy)
GT_OBJECT picture;
GT_VCOORD vx, vy;
GT_DCOORD *dx, *dy;

EXAMPLES

BUGS

*** UNIMPLEMENTED ***
Page 155

SEE ALSO

Gvctodc, Gdctovc, Gdtovdelta.

Gdtovdelta PGL TRANSFORMS SUPPORT Gdtovdelta

DEFINITION

Converts a device coordinate distance to a viewport coordinate distance
for the given picture.

PURPOSE

To provide a portable method by which the application may determine
viewport coordinate differences from actual device coordinate
differences. This routine uses the picture's view, window, and device
to calculate the desired values.

OPERATION

void Gdtovdelta(picture, dx, dy, vx, vy)
GT_OBJECT picture;
GT_DCOORD dx, dy;
GT_VCOORD *vx, *vy;

EXAMPLES

BUGS

SEE ALSO

Gvctodc, Gdctovc, Gvtoddelta.

Gvctowc PGL TRANSFORMS SUPPORT Gvctowc

DEFINITION

Converts a viewport coordinate to a world coordinate for the given view.

PURPOSE

To provide a convenient method by which the application may determine
world coordinates from viewport coordinates. This routine uses the
given view's viewport and world bounds to calculate the desired values.

OPERATION

void Gvctowc(view, vx, vy, wx, wy)
GT_OBJECT view;
GT_VCOORD vx, vy;
GT_COORD *wx, *wy;
Page 156

EXAMPLES

BUGS

SEE ALSO

Gwctovc, Gvtowdelta, Gwtovdelta.

Gwctovc PGL TRANSFORMS SUPPORT Gwctovc

DEFINITION

Converts a world coordinate to a viewport coordinate for the given view.

PURPOSE

To provide a convenient method by which the application may determine
viewport coordinates from world coordinates. This routine uses the
given view's viewport and world bounds to calculate the desired values.

OPERATION

void Gwctovc(view, wx, wy, vx, vy)
GT_OBJECT view;
GT_COORD wx, wy;
GT_VCOORD *vx, *vy;

EXAMPLES

BUGS

SEE ALSO

Gvctowc, Gvtowdelta, Gwtovdelta.

Gvtowdelta PGL TRANSFORMS SUPPORT
Gvtowdelta

DEFINITION

Converts a viewport coordinate distance to a world coordinate distance
for the given view.

PURPOSE

To provide a convenient method by which the application may determine
world coordinate distances from viewport coordinate distances. This
routine uses the given view's viewport and world bounds to calculate
the desired values.

OPERATION
Page 157

void Gvtowdelta(view, vx, vy, wx, wy)
GT_OBJECT view;
GT_VCOORD vx, vy;
GT_COORD *wx, *wy;

EXAMPLES

BUGS

SEE ALSO

Gvctowc, Gwctovc, Gwtovdelta.

Gwtovdelta PGL TRANSFORMS SUPPORT
Gwtovdelta

DEFINITION

Converts a world coordinate distance to a viewport coordinate distance
for the given view.

PURPOSE

To provide a convenient method by which the application may determine
viewport coordinate distances from world coordinate distances. This
routine uses the given view's viewport and world bounds to calculate
the desired values.

OPERATION

void Gwtovdelta(view, wx, wy, vx, vy)
GT_OBJECT view;
GT_COORD wx, wy;
GT_VCOORD *vx, *vy;

EXAMPLES

BUGS

SEE ALSO

Gvctowc, Gwctovc, Gvtowdelta.

Gdctowc PGL TRANSFORMS SUPPORT Gdctowc

DEFINITION

Converts a device coordinate to a world coordinate for the given
picture.

PURPOSE
Page 158

To provide a convenient method by which the application may determine
world coordinates from device coordinates. This routine uses the
given picture's view, window and device to calculate the desired values.

OPERATION

void Gdctowc(picture, devx, devy, wx, wy)
GT_OBJECT picture;
GT_DCOORD devx, devy;
GT_COORD *wx, *wy;

EXAMPLES

BUGS

SEE ALSO

Gwctodc, Gdtowdelta, Gwtoddelta.

Gwctodc PGL TRANSFORMS SUPPORT Gwctodc

DEFINITION

Converts a world coordinate to a device coordinate for the given
picture.

PURPOSE

To provide a convenient method by which the application may determine
device coordinates from world coordinates. This routine uses the
given picture's view, window and device to calculate the desired values.

OPERATION

void Gwctodc(picture, wx, wy, dx, dy)
GT_OBJECT picture;
GT_COORD wx, wy;
GT_DCOORD *dx, *dy;

EXAMPLES

BUGS

SEE ALSO

Gdctowc, Gdtowdelta, Gwtoddelta.

Gdtowdelta PGL TRANSFORMS SUPPORT
Gdtowdelta
Page 159

DEFINITION

Converts a device coordinate distance to a world coordinate distance
for the given picture.

PURPOSE

To provide a convenient method by which the application may determine
world coordinate distances from device coordinate distances. This
routine uses the given picture's view, window and device to calculate
the desired values.

OPERATION

void Gdtowdelta(picture, devx, devy, wx, wy)
GT_OBJECT picture;
GT_DCOORD devx, devy;
GT_COORD *wx, *wy;

EXAMPLES

BUGS

SEE ALSO

Gdctowc, Gwctodc, Gwtoddelta.

Gwtoddelta PGL TRANSFORMS SUPPORT
Gwtoddelta

DEFINITION

Converts a world coordinate distance to a device coordinate distance
for the given picture.

PURPOSE

To provide a convenient method by which the application may determine
device coordinate distances from world coordinate distances. This
routine uses the given picture's view, window and device to calculate
the desired values.

OPERATION

void Gwtoddelta(picture, wx, wy, dx, dy)
GT_OBJECT picture;
GT_COORD wx, wy;
GT_DCOORD *dx, *dy;

EXAMPLES

BUGS
Page 160

SEE ALSO

Gdctowc, Gwctodc, Gdtowdelta.

Gdctosc PGL TRANSFORMS SUPPORT Gdctosc

DEFINITION

Converts a device coordinate to a screen virtual coordinate for
the given device graphic object.

PURPOSE

To provide a convenient method by which the application may determine
virtual screen coordinates from device coordinates. This routine uses
the given device's actual dimensions to calculate the desired values.

OPERATION

void Gdctosc(device, dx, dy, sx, sy)
GT_OBJECT device;
GT_DCOORD dx, dy;
GT_SCOORD *sx, *sy;

EXAMPLES

BUGS

SEE ALSO

Gsctodc, Gdtosdelta, Gstoddelta.

Gsctodc PGL TRANSFORMS SUPPORT Gsctodc

DEFINITION

Converts a screen virtual coordinate to a device coordinate for the
given device graphic object.

PURPOSE

To provide a convenient method by which the application may determine
device coordinates from virtual screen coordinates. This routine uses
the given device's actual dimensions to calculate the desired values.

OPERATION

void Gsctodc(device, vx, vy, dx, dy)
GT_OBJECT device;
GT_SCOORD vx, vy;
Page 161

GT_DCOORD *dx, *dy;

EXAMPLES

BUGS

SEE ALSO

Gdctosc, Gdtosdelta, Gstoddelta.

Gdtosdelta PGL TRANSFORMS SUPPORT
Gdtosdelta

DEFINITION

Converts a device coordinate distance to a virtual screen coordinate
distance for the given device.

PURPOSE

To provide a convenient method by which the application may determine
virtual screen coordinate distances from device coordinate distances.
This routine uses the given device's actual dimensions to calculate
the desired values.

OPERATION

void Gdtosdelta(device, devx, devy, sx, sy)
GT_OBJECT device;
GT_DCOORD devx, devy;
GT_SCOORD *sx, *sy;

EXAMPLES

BUGS

*** UNIMPLEMENTED ***

SEE ALSO

Gdctosc, Gsctodc, Gstoddelta.

Gstoddelta PGL TRANSFORMS SUPPORT
Gstoddelta

DEFINITION

Converts a virtual screen coordinate distance to a device coordinate
distance for the given device.

PURPOSE
Page 162

To provide a convenient method by which the application may determine
device coordinate distances from virtual screen coordinate distances.
This routine uses the given device's actual dimensions to calculate
the desired values.

OPERATION

void Gstoddelta(device, sx, sy, dx, dy)
GT_OBJECT device;
GT_SCOORD sx, sy;
GT_DCOORD *dx, *dy;

EXAMPLES

BUGS

*** UNIMPLEMENTED ***

SEE ALSO

Gdctosc, Gsctodc, Gdtosdelta.

Gwctosc PGL TRANSFORMS SUPPORT Gwctosc

DEFINITION

Converts a world coordinate to a screen virtual coordinate for
the given picture graphic object.

PURPOSE

To provide a convenient method by which the application may determine
virtual screen coordinates from world coordinates. This routine uses
the given picture's view, window and device to calculate the desired
values.

OPERATION

void Gwctosc(picture, wx, wy, sx, sy)
GT_OBJECT picture;
GT_COORD wx, wy;
GT_SCOORD *sx, *sy;

EXAMPLES

BUGS

SEE ALSO

 PGL HIGH LEVEL SUPPORT
Page 163

Gzoom(win, curxpos, curypos, shift, direction)

Gpan(win, panxmin, panymin, panxmax, panymax)

Gmove(win, cursx, cursy,
apanxmin, apanymin, apanxmax, apanymax,
panxmin, panymin, panxmax, panymax, handler)

struct gtile *Grubberbox(bx1, by1, bx2, by2, xmin, ymin, xmax, ymax, corner,
minboxwidth, minboxheight, color, dx, dy)

struct gtile *Gmovebox(x1, y1, x2, y2, xmin, ymin, xmax, ymax, color, dx, dy)

Gzoom PGL HIGH LEVEL SUPPORT Gzoom

DEFINITION

Reduces or increases a view graphic object's world coordinate space.

PURPOSE

To magnify or demagnify the graphics in a view. This function is
optimized for this particular process.

OPERATION

void Gzoom(view, curxpos, curypos, shift, direction)
GT_OBJECT view;
GT_COORD curxpos, curypos;
int shift;
int direction;

The minimum and maximum world size Gzoom() will allow is
limited.

view

This is the view graphic object whose world coordinate space
will be changed.

curxpos, curypos

This is the position, in world coordinates, around which the
zoom occurs. Hueristically this is the cursor position which
is over the same displayed graphic detail before and after the
zoom, no matter where the cursor in the view. This means that
the ratio of the distance from curxpos to the left of the view's
world boundary to the distance from curxpos to the right is pre-
served during the zoom. This is true for the Y ratios also.

shift
Page 164

This specifies how much the world coordinate space is changed.
The greater the given shift parameter is, the less the world
space bounds are changed. The actual amount, the same is X
and Y directions, is

original_size * (1 + 1/(2^shift)).

i.e. size after zoomin is

original_size - (original_size >> shift)

and size after zoomout is

original_size + (original_size >> shift).

direction

Specifies whether a zoom in (the world space is shrunk, the
displayed graphics appears to grow larger) or a zoom out
(the world space is enlarged, the displayed graphics appears
to shrink).

The given direction can be either:

G_ZOOMIN

G_ZOOMOUT

EXAMPLES

BUGS

SEE ALSO

Gpan, Gmove.

Gpan PGL HIGH LEVEL SUPPORT Gpan

DEFINITION

Translates a view graphic object's world coordinate space.

PURPOSE

To move the apparent view over a group of displayed graphics. The user
appears to move the displayed graphical data, some of it disappearing
off the edge of the view and some more appearing on the other side. This
function is optimized for this particular process.

OPERATION

GT_EVENT Gpan(view, panxmin, panymin, panxmax, panymax)
GT_OBJECT view;
Page 165

GT_COORD panxmin, panymin, panxmax, panymax;

When this is called, subsequent mouse motion causes the given
view to translate within the supplied boundaries. Any
G_BUTTONEVENT or G_KEYEVENT will terminate operation and
this function will then return the terminating event to the
caller. During the operation the cursor is 'locked' and not
allowed to visibly move (so that the cursor will not move out
of the window, ending the pan prematurely).

view

This is the view graphic object whose world coordinate space
will be changed.

panxmin, panymin, panxmax, panymax

This is the boundary, in world coordinates, within which the
panning occurs. Hueristically this is the interesting area,
part of which will be displayed at all times. This means that
the view minimum world X coordinate is always less than the
given panxmax and that the view maximum world X coordinate
is always greater than panxmin. Similarly for the Y coordinates.

EXAMPLES

BUGS

SEE ALSO

Gzoom, Gmove.

Gmove PGL HIGH LEVEL SUPPORT Gmove

DEFINITION

Provides interactive support for moving an object with a motion device.

PURPOSE

Provides application with an interactive interface between the user and
an application routine that will be called each time the motion device
moves. Support is provided for well defined 'autopanning' (autopanning
is when the user moves an object up against the side of a view and the
view's displayed graphics translate in the opposite direction, allowing
the user to position the object at a position that was not displayed
when the user started the move).

OPERATION

GT_EVENT Gmove(picture, cursx, cursy,
apanxmin, apanymin, apanxmax, apanymax,
panxmin, panymin, panxmax, panymax, handler)
Page 166

GT_OBJECT picture;
GT_COORD cursx, cursy;
GT_COORD apanxmin, apanymin, apanxmax, apanymax;
GT_COORD panxmin, panymin, panxmax, panymax;
int (*handler)();

When this is called, subsequent mouse motion causes the given
view to translate within the supplied boundaries. Any event
other than G_MOTIONEVENT will terminate operation and
this function will then return the terminating event to the
caller. During the operation the cursor is 'locked' and not
allowed to visibly move (so that the cursor will not move out
of the window, ending the pan prematurely).

picture

This picture has the view graphic object whose world coordinate
space will be changed when panning and which is used for cursor
motion device to world coordinate transformations.

THIS MUST BE THE CURRENTLY OPEN PICTURE.

cursx, cursy

This is the current cursor position in world coordinates
(relative to the given picture's view).

apanxmin, apanymin, apanxmax, apanymax

This is the boundary, in world coordinates, which, if and when
the cursor moves outside it, autopanning occurs.

panxmin, panymin, panxmax, panymax

This is the boundary, in world coordinates, within which the
panning can occur. Hueristically this is the interesting area,
part of which will be displayed at all times. This means that
the view minimum world X coordinate is always less than the
given panxmax and that the view maximum world X coordinate
is always greater than panxmin. Similarly for the Y coordinates.

handler

This is a pointer to a function that will be called whenever
movement occurs. It provides the application with the
information necessary to update the visual display of the
object that is being moved.

It is defined as

int our_move_handler(dx, dy, autopan)
GT_COORD dx ,dy;
int autopan;
Page 167

dx, dy

These are the change in world coordinates of
the mouse since the last time then handler was
called.

autopan

This flag is non-zero if autopanning occurred in
order that the previous position plus the deltas
(dx, dy) remains a visible position.

EXAMPLES
/*

Variables used by both our_createrectproc and
our_interactive_create.

*/
static int firstime;
static GT_COORD createx;
static GT_COORD createy;
static GT_COORD createstartx;
static GT_COORD createstartx;
static GT_CTX createctx;

static int our_createrectproc(dx, dy, panned)
GT_COORD dx, dy;
int panned;

{
/* if this is the first time here...*/
if (firstime)

{
/* ..reset flag. */
firstime = 0;
}

else if (!panned)
{
/* ..else is we didn't pan, undraw old rectangle. */
Gdrawrect(createctx, createstartx, createstarty,

 createx, createy);
}

/* adjust the movable rectangle point */
createx += dx;
createy += dy;
/* update cursor position, since Gmove has it locked */
Gsetcursor(createx, createy);
/* draw the new rectangle */
Gdrawrect(createctx, createstartx, createstarty, createx,

createy);
}

/**
* our_interactive_create
*
* Input: event which starts interactive create.
Page 168

* ctx graphic context of new primitive
* NOTE that createrectproc assumes writemode
* attribute in createctx is G_XORWRITEMODE so
* it can undraw rectangles.
*
*
**/
our_interactive_create(event, ctx)
GT_EVENT event;
GT_CTX ctx;

{
GT_OBJECT view = Gevent_view(event);
GT_OBJECT picture = Gevent_picture(event);
GT_OBJECT seg;
GT_COORD wxmin, wymin, wxmax, wymax;

/*
Let our_createrectproc know that there are no previous
rectangles to undraw.

*/
firstime = 1;
/*

Let our_createrectproc know the graphic context to draw
the interactively resizing rectangles with.

*/
createctx = ctx;

/*
Save the current position of the mouse as the fixed
point of the rectangle and as the original position
of the movable point.

*/
createstartx = Gevent_x(event);
createstarty = Gevent_y(event);
createx = createstartx;
createy = createstarty;

/*
Get and use the world bounds of the view as the
autopan boundary.

*/
Ginqview(view, GARG_WORLD, &wxmin, &wymin, &wxmax,&wymax,0);

/*
We will put the newly created rectangle into the
top level segment of the view. If the view hasn't
a segment, create one for it.

*/
Ginqview(view, GARG_SEGMENT, &seg, 0);
if (!seg)

{
seg = Gsegment(0);
Gmodview(view, GARG_SEGMENT, seg, 0);
Page 169

}

/*
Let Gmove know which picture the mouse movements are
to be transformed in and also make Gdrawrect in
our_createrectproc draw to this picture also.

*/
Gpushopen(picture);

/*
Do the interactive rectangle create. This will return
the event which the user ended the rectangle create
which is not saved or used here. Autopanning is allowed
within all world coordinate space here.

*/
Gmove(picture, createstartx, createstarty,
/* autopan boundary */
 wxmin, wymin, wxmax, wymax,
/* pan boundary */
 G_MINWORLD, G_MINWORLD, G_MAXWORLD, G_MAXWORLD,
our_createrectproc);

/*
Restore the previously open picture.

*/
Gpopopen(picture);

/*
Open the segment to put the rectangle into and establish
the desired graphic context for the rectangle. Create
the rectangle and restore the previous open segment and
open context states.

*/
Gpushopen(seg);
Gpushopenctx(fed_createctx);
Grectangle(createstartx, createstarty, createx,createy);
Gpopopenctx();
Gpopopen(seg);
}

BUGS

cursx, cursy probably can be read from the cursor internal to Gmove
and not supplied by the application.

SEE ALSO

Gzoom, Gpan.

Greadfont PGL FONT OPERATIONS
Greadfont

DEFINITION
Page 170

Reads a font of given name and type and assigns it the given font
number. The font is then invoked by setting the font attribute in a
text primitives graphic context to this font number. Conversly, all
text primitives which reference a font of the given font number will
now render with the new text font just loaded.

PURPOSE

To display text in other than the resident bitmap text font.

OPERATION

int Greadfont(fontname, fontnum, fonttype)
char *fontname;
int fontnum;
int fonttype;

If font is loaded successfully zero is returned. Otherwise
either a file I/O error is returned or the following:

G_ERROR_FONTTYPENOTSUPPORTED

fontname

This is a pointer to a text string representing the name of the
text font that is to be loaded.

fontnum

This is the number to be assigned to the font after it is loaded
to be used to reference the font from the GARG_FONT attribute
in the graphic context. If a font has already been loaded and
assigned this font number then the previously loaded font will
be deleted and the new font loaded in it's place. Font number 0
is reserved for the internal bitmap font and cannot be used
here.

fonttype

This is the kind of font that is to be loaded and converted to
the internal PGL text font format.

Currently supported inport font types are:

G_FONTTYPE_PGLBINARYPGL's own binary representation.
Current fonts include stroke fonts:

stroke1.fnt Basic stoke text.
stroke2.fntBasic stroke with more details
stroke3.fntBasic outline font
stroke4.fnt
stroke5.fntBasic italics text.
stroke6.fntFancy italics text.
Page 171

EXAMPLES

static int readallstrokefonts()
{
int fontnum = 0;
char name[13];

do {
++fontnum;
sprintf(name,"stroke%d.fnt",fontnum);
} while ((status
= Greadfont(name, fontnum, G_FONTTYPE_PGLBINARY)) == 0);

/* return # of fonts loaded */
return(fontnum - 1);
}

BUGS

G_FONTTYPE_PGLBINARY is the only type of font supported.

The font name is used also as the name of the disk file containing the
font definition and therefore must be less than or equal to 8 characters
long plus three character extension (For DOS only).

SEE ALSO

Gwritefont, Gdeletefont, Gdeletefont, Ginqurefont, Gfont, Gfontchar

Gwritefont PGL FONT OPERATIONS
Gwritefont

DEFINITION

Writes the text font of the given font number in the given font type
format and assigns it the given font name.

PURPOSE

This will allow conversion of one text font format to another by reading
it in in one format and then writing it out in another. Also allows
the application to save a font which it has created using the PGL
internal font onto disk and in multiple formats.

OPERATION

int Gwritefont(fontname, fontnum, fonttype)
char *fontname;
int fontnum;
int fonttype;

If font is written successfully zero is returned. Otherwise
either a file I/O error is returned or the following:
Page 172

G_ERROR_FONTNOTLOADEDThere is no font having this
font number currently resident.

G_ERROR_FONTTYPENOTSUPPORTED

fontname

This is a pointer to a text string to represent the name of the
text font that is to be written.

fontnum

This is the number of the font which has been read and now is to
be written.

fonttype

This is the kind of font that is to be converted to and written
form the internal PGL text font format.

Currently supported export font types are:

G_FONTTYPE_PGLBINARYPGL's own binary representation.

EXAMPLES

BUGS

G_FONTTYPE_PGLBINARY is the only type of font supported.

The font name is used also as the name of the disk file containing the
font definition and therefore must be less than or equal to 8 characters
long plus three character extension (For DOS only).

SEE ALSO

Greadfont, Gdeletefont, Ginqurefont, Gfont, Gfontchar

Gdeletefont PGL FONT OPERATIONS
Gdeletefont

DEFINITION

Deletes the text font of the given font number.

PURPOSE

This will free up the memory that was taken up by the text font.

OPERATION

int Gdeletefont(fontnum)
Page 173

int fontnum;

If font is deleted successfully zero is returned. Otherwise
a error is returned of the following type:

G_ERROR_FONTNOTLOADEDThere is no font having this
font number currently resident.

fontnum

This is the number of the font which has been read and now is to
be deleted. Font zero cannot be deleted and therefore the given
fontnum may not equal zero.

EXAMPLES

BUGS

Fontnum equal 0 is not checked for and will be bad.

SEE ALSO

Greadfont, Gwritefont, Ginqurefont, Gfont, Gfontchar

Ginquirefont PGL FONT OPERATIONS
Ginquirefont

DEFINITION

Inquires the text font of the given font number.

PURPOSE

This will free up the memory that was taken up by the text font.

OPERATION

char *Ginquirefont(fontnum)
int fontnum;

If font is inquired successfully a non-zero value is returned.
Otherwise NULL is returned (probably because there is no font
of the given font number).

fontnum

This is the number of the font which is now to be inquired.

EXAMPLES

BUGS

A (char *)1 is returned because the font name is not now saved with
Page 174

the font definition.
More information should be returned about the font.

SEE ALSO

Greadfont, Gwritefont, Gdeletefont, Ginqurefont, Gfont, Gfontchar

Gfont PGL FONT OPERATIONS Gfont

DEFINITION

Creates a new font.

PURPOSE

This will create a font ready for the application to define characters
for using Gfontchar(). It can then be displayed in place of one of the
standard fonts or saved using Gwritefont(), or use any of the standard
font manipulation routines.

OPERATION

int Gfont(fontnum)
int fontnum;

*** UNIMPLEMENTED ***

fontnum

This is the number of the font which is now to be created.

EXAMPLES

BUGS
*** UNIMPLEMENTED ***

SEE ALSO

Greadfont, Gwritefont, Gdeletefont, Ginqurefont, Gfontchar

Gfontchar PGL FONT OPERATIONS
Gfontchar

DEFINITION

Adds or replaces a character defintion in the text font of the given
font number.

PURPOSE

This will create a font character ready for display or manipulation
using the standard font routines.
Page 175

OPERATION

int Gfontchar(fontnum, ch, object_defintion)
int fontnum;
char ch;
GT_OBJECT object_defintion;

*** UNIMPLEMENTED ***

fontnum

This is the number of the font to which the new character
defintion is to be added.

EXAMPLES

BUGS
*** UNIMPLEMENTED ***

SEE ALSO

Greadfont, Gwritefont, Gdeletefont, Ginqurefont, Gfontchar

Gfilewrite PGL FILE SYSTEM SUPPORT
Gfilewrite

DEFINITION

Writes then given object to the file specified by the filestate.

PURPOSE

To save graphic objects to a device (i.e. disk) for more permanent
storage or processing.

OPERATION

void Gfilewrite(object)
GT_OBJECT object;

EXAMPLES

BUGS

Segments called from calls within segments are written each time in
their entirety even though is may be the same segment being called
many times.
Windows, devices, pictures, views cannot be written at this time.

SEE ALSO
Page 176

Gfileread, Gfilestate, Gpushfilestate, Gpopfilestate, Gwritefile,
Greadfile.

Gfileread PGL FILE SYSTEM SUPPORT
Gfileread

DEFINITION

Reads the open file specified by the filestate.

PURPOSE

To read graphic objects from a device (i.e. disk) for more permanent
storage or processing.

OPERATION

void Gfileread()

PRIMITIVES

Primitives are read and put into the currently open segment.

EXAMPLES

BUGS

SEE ALSO

Gfilewrite, Gfilestate, Gpushfilestate, Gpopfilestate, Gwritefile,
Greadfile.

Gfilestate PGL FILE SYSTEM SUPPORT Gfilestate

DEFINITION

Configures the file state used by the file functions Gfileread() and
Gfilewrite() while saving the previous file state on an internal stack.

PURPOSE

To allow the application to setup the file system for subsequent
operations.

OPERATION

int Gfilestate(filename, fileflags, writehandler, readhandler)
char *filename;
int fileflags;
int (*writehandler)();
Page 177

int (*readhandler)();

Zero is returned is this function is successful. Errors include
internal file state stack overflow and file open errors. The
file specified by the given filename parameter is (re)opened
each time the given filename or given fileflags change.

filename

The ASCII text name of the file. Note that operating
system limitations should be observed here (if the
standard writehandler and readhandler are used which
are just shells around fwrite and fread 'C' library
functions).

fileflags

The given fileflags parameter specifies the type of
file contents, file operations, and file systems.

-The file contents types supported are:

 G_FILETYPEASCII

The file contains an ASCII representation of
graphic data in the form of 'C' language
statements. When these statements are
compiled and executed as code or read in with
the PGL function Gfileread() the graphic data
that was written out with Gfilewrite() will
be generated.

If file contents are NOT of type G_FILETYPEASCII
then data is stored in big-endian format (where
the most significant byte is at the lowest
address). This means bytes are swapped on
writes and reads on INTEL type microprocessors
so that binary files are readable by all
platforms.

-The file operations supported are:

 G_CREATEFILE

When the file is opened it is created. So that
if there was a file by the same name, it is
deleted. If in a G_WRITEFILE mode 'C' library
fopen parameter is "wb". Else if in a G_READFILE
operation mode the 'C' library fopen function
parameter is "w+b".

If not in G_CREATEFILE operation mode then if
in G_WRITEFILE operation mode then the fopen
parameter becomes "ab", if in G_READFILE mode
Page 178

it becomes "rb".

 G_WRITEFILE

Specifies how the file is opened, see
G_CREATEFILE above.

 G_READFILE

Specifies how the file is opened, see
G_CREATEFILE above.

 G_FILEWRITEFLUSH

The file is flushed every write operation.

-The file system types supported are:

 G_NONSTANDARDFILESYSTEM

The file is not opened by Gfilestate() and
must be opened by application. This also allows
file output to devices other than the disk
device (by setting this flag and modifying the
read and write handlers - see below).

writehandler

This is a pointer to the function which is called when
data is to be written. It is of the form:

int writehandler(buffer, count)
char *buffer;
int count;

The count actually written is returned.

buffer

Pointer to the data to be written.

count

Number of bytes to write from the
buffer to the device.

G_DEFAULTFILEWRITEHANDLER

If writehandler is equal to this, then the
internal write handler is used (a shell around
fwrite).

readhandler
Page 179

This is a pointer to the function which is called when
data is to be read. It is of the form:

int gd_filestdreadhandler(buffer, count)
char *buffer;
int count;

The count actually read is returned.

buffer

Pointer to the place to put the data
read.

count

Number of bytes to read from the
device to the buffer.

G_DEFAULTFILEREADHANDLER

If readhandler is equal to this, then the
internal read handler is used (a shell around
fread).

EXAMPLES

BUGS

Need an (*openhandler)() to handle conversion of names for application
OS independent names easier.
G_FILEWRITEFLUSH is not implemented.

SEE ALSO

Gfilewrite, Gfileread, Gpushfilestate, Gpopfilestate, Gwritefile,
Greadfile.

Gpushfilestate PGL DATA SEARCH OPERATIONS
Gpushfilestate

DEFINITION

Configures the file state used by the file functions Gfileread() and
Gfilewrite() while saving the previous file state on an internal stack.

PURPOSE

To allow the application to use the file system without having to
remember how the file state is currently set up and without having
to save the state and then restore it when done (though Gpopfilestate
should be called).
Page 180

OPERATION

int Gpushfilestate(filename, fileflags, writehandler, readhandler)
char *filename;
int fileflags;
int (*writehandler)();
int (*readhandler)();

Returns non-zero value if internal stack has overflowed or
a file open error has occurred.

EXAMPLES

BUGS

The internal stack is limited in size (allows ~10 pushes at this time).

SEE ALSO

Gfilewrite, Gfileread, Gfilestate, Gpopfilestate, Gwritefile, Greadfile.

Gpopfilestate PGL DATA SEARCH OPERATIONS Gpopfilestate

DEFINITION

Configures the file state used by the file functions Gfileread() and
Gfilewrite() by restoring the file state that existed previous to the
last Gpushfilestate() function call.

PURPOSE

To restore the previous filestate without having to know or remember
what it was.

OPERATION

int Gpopfilestate()

Returns non-zero value if internal stack has underflowed or
a file re-open error has occurred.

EXAMPLES

BUGS

The internal stack is limited in size (allows ~10 pops at this time).

SEE ALSO

Gfilewrite, Gfileread, Gfilestate, Gpushfilestate, Gwritefile,
Greadfile.

Gwritefile PGL DATA SEARCH OPERATIONS Gwritefile
Page 181

DEFINITION

To write data by directly accessing the writehandler installed in
the current file state.

PURPOSE

To allow the application to supplement the file system writing of data.

OPERATION

int (*Gwritefile)(buffer, count)
char *buffer;
unsigned int count;

Returns count of bytes actually written.

(See Gfilestate (writehandler) for more information).
EXAMPLES

BUGS

This is a lousy (confusing) name for this function.

SEE ALSO

Gfilewrite, Gfileread, Gfilestate, Gpushfilestate, Gpopfilestate,
Greadfile.

Greadfile PGL DATA SEARCH OPERATIONS Greadfile

DEFINITION

To read data by directly accessing the readhandler installed in
the current file state.

PURPOSE

To allow the application to supplement the file system reading of data.

OPERATION

int (*Greadfile)(buffer, count)
char *buffer;
unsigned int count;

Returns count of bytes actually read.

(See Gfilestate (readhandler) for more information).
EXAMPLES

BUGS
Page 182

This is a lousy (confusing) name for this function.

SEE ALSO

Gfilewrite, Gfileread, Gfilestate, Gpushfilestate, Gpopfilestate,
Gwritefile.

Gwrite PGL DATA SEARCH OPERATIONS
Gwrite

DEFINITION

To write the ASCII 'C' language definition of a graphic object.

PURPOSE

To allow the application to do it's own file output. Note that this
differs from Gfilewrite in that the context of the given object is
not written out and that call primitives and segments are not traversed
in any way.

OPERATION

void Gwrite(object)
GT_OBJECT object;

(See Gfilestate (writehandler) for more information).

EXAMPLES

#define MAXFILEOUTPUTBUFFER80
static char fileoutputbuffer[MAXFILEOUTPUTBUFFER];
static int fileoutbuffercount = 0;

static our_filewritehandler(buffer, count)
char *buffer;
int count;

{
/* if the buffer isn't big enough... */
if (fileoutbuffercount + count >= MAXFILEOUTPUTBUFFER)

{
/*..adjust count of bytes to copy so don't overrun it */
count = MAXFILEOUTPUTBUFFER - 1 - fileoutbuffercount;
}

/* append the data in the buffer */
bcopy(buffer,fileoutputbuffer + fileoutputbuffercount, count);
/* record number bytes in buffer */
fileoutbuffercount += count;
/* append data with a '\0' */
*(fileoutputbuffer + fileoutputbuffercount) = 0;
}

/**
Page 183

our_dump_object

Generate a text graphic object containing a ASCII string
representing the PGL function call in 'C' source code that
would create a copy the given object and display
this ASCII string at the given dump_object_x, dump_object_y
in the currently open picture. The text object is added to
the currently open segment.

**/
static int our_dump_object(obj, dump_object_x, dump_object_y)
GT_OBJECT obj;
GT_COORD dump_object_x;
GT_COORD dump_object_y;

{
GT_OBJECT textobject;

fileoutbuffercount = 0;
Gpushfilestate(

/* file name (not needed here) */
NULL,
/* file types */
G_FILETYPEASCII
| G_FILEWRITEFLUSH
| G_CREATEFILE
| G_WRITEFILE
| G_NONSTANDARDFILESYSTEM,
/* call our local routine for output */
our_filewritehandler,
/* don't need this */
G_DEFAULTFILEREADHANDLER);

/* generate ASCII 'C' function call equivalent of the object */
Gwrite(obj);
/* restore previous file state */
Gpopfilestate();
/*

Generate a text object for retained graphic display
of the text string in the currently open segment

*/
textobject = Gtext(dump_object_x, dump_object_y,

fileoutputbuffer);
/* display the text in the currently open picture */
Gdraw(textobject);

}
BUGS

This is a lousy interface. Probably should hook up this and Gfilewrite
to Gtraversal so all options are supported and in a standard way.

SEE ALSO

Gfilewrite, Gfileread, Gfilestate, Gpushfilestate, Gpopfilestate,
Gwritefile.
Page 184

 PGL CURSOR MANAGEMENT

Gsetcursor(x, y) position cursor in open picture at world coordinate.

Gdrawcursor(x, y) draw cursor at device coordinate.

Gsetcursorimage(gp, color) define shape and color of the cursor.

Gsetcursorbounds(xmin, ymin, xmax, ymax) limit cursor movement.

Gsetdefaultcursorbounds() limit cursor to the default boundary.

Gctlcursor(flag) enable/disable automatic system cursor tracking.

Ghidecursor(id) disable display of cursor in the current open picture.

Gunhidecursor(id) enable display of cursor in the current open picture.

Gsetcursor PGL CURSOR MANAGEMENT
Gsetcursor

DEFINITION

Positions the cursor in the currently open picture at the given world
coordinate position.

PURPOSE

To provide a method by which the application can manipulate the cursor.

OPERATION

void Gsetcursor(x, y)
GT_COORD x;
GT_COORD y;

EXAMPLES

BUGS

Perhaps the picture with which to transform the world coordinates to
the device coordinates of the cursor should be a parameter. Forgetting
that the currently open picture is used leads to bugs.

SEE ALSO

Gdrawcursor, Gsetcursorbounds, Gsetdefaultcursorbounds,
Gsetcursorimage, Gctlcursor, Ghidecursor, Gunhidecursor.

Gdrawcursor PGL CURSOR MANAGEMENT
Gdrawcursor
Page 185

DEFINITION

Draws the cursor at the given device coordinate position.

PURPOSE

To provide a method by which the application can forcefully draw the
cursor to the device. Note that clipping, bounds checking, etc. may
or may not work for the application using this function.

OPERATION

void Gdrawccursor(x, y)
GT_DCOORD x, y;

EXAMPLES

BUGS

SEE ALSO

Gsetcursor, Gsetcursorbounds, Gsetdefaultcursorbounds,
Gsetcursorimage, Gctlcursor, Ghidecursor, Gunhidecursor.

Gsetcursorbounds PGL CURSOR MANAGEMENT
Gsetcursorbounds

DEFINITION

Confines the cursor to the given world coordinate boundary in the
currently open picture.

PURPOSE

To provide a method by which the application can prevent the cursor
form leaving a specified area without having to lock the cursor and
manually update and confine it.

OPERATION

void Gsetcursorbounds(xmin, ymin, xmax, ymax)
GT_COORD xmin;
GT_COORD ymin;
GT_COORD xmax;
GT_COORD ymax;

EXAMPLES

BUGS

SEE ALSO
Page 186

Gsetcursor, Gdrawcursor, Gsetdefaultcursorbounds, Gsetcursorimage,
Gctlcursor, Ghidecursor, Gunhidecursor.

Gsetdefaultcursorbounds PGL CURSOR MANAGEMENT
Gsetdefaultcursorbounds

DEFINITION

Confines the cursor to the default boundary which consists of the edges
of the video screen of the device in the currently open picture.

PURPOSE

To provide a method to undo what the function Gsetcursorbounds does.
This is the initial condition of the cursor bounds state.

OPERATION

void Gsetdefaultcursorbounds()

EXAMPLES

BUGS

SEE ALSO

Gsetcursor, Gdrawcursor, Gsetcursorbounds, Gsetcursorimage, Gctlcursor,
Ghidecursor, Gunhidecursor.

Gsetcursorimage PGL CURSOR MANAGEMENT
Gsetcursorimage

DEFINITION

Defines the cursor image to be the given image. If the given image
is monochrome (depth equals one) then the foreground color is the
specified color and the background color is transparent.

PURPOSE

To provide a method to change the appearance of the cursor.

OPERATION

void Gsetcursorimage(gp, color)
GT_BITMAP gp;
GT_ATT color;

EXAMPLES

BUGS
Page 187

SEE ALSO

Gbitmap, Gsetcursor, Gdrawcursor, Gsetcursorbounds,
Gsetdefaultcursorbounds, Gctlcursor, Ghidecursor, Gunhidecursor.

Gctlcursor PGL CURSOR MANAGEMENT Gctlcursor

DEFINITION

Specifies whether the cursor image is to be moved around in response
to the mouse by the application (flag is TRUE) or the graphics system
(flag is FALSE, the default).

PURPOSE

To provide a method by which the application can explicitly control
the behavior of the cursor. Conversely, the behavior of the cursor
can be handled by PGL, relieving the application from the overhead
of updating it's position all the time.

OPERATION

void Gctlcursor(flag)
int flag;

EXAMPLES

BUGS

SEE ALSO

Gsetcursor, Gdrawcursor, Gsetcursorbounds, Gsetdefaultcursorbounds,
Gsetcursorimage, Ghidecursor, Gunhidecursor.

Ghidecursor PGL CURSOR MANAGEMENT
Ghidecursor

DEFINITION

Specifies that the cursor image is not to be displayed in the open
picture. If the cursor is currently visible, it is undrawn. A caller
identification is passed as a parameter so that a particular
Gunhidecursor call(the one that has the same caller identification)
is the only call that will reenable display of the cursor. This allows
easy nesting of hide/unhide calls without confusion as to what call
hid/unhid the cursor last.

PURPOSE

To provide a method by which the application can explicitly control
the behavior of the cursor. This can also be used for optimization
of drawing speed by hiding the cursor once for multiple object
Page 188

draws instead of once for each draw.

OPERATION

void Ghidecursor(id)
int id;

EXAMPLES

BUGS

SEE ALSO

Gsetcursor, Gdrawcursor, Gsetcursorbounds, Gsetdefaultcursorbounds,
Gsetcursorimage, Gctlcursor, Gunhidecursor.

Gunhidecursor PGL CURSOR MANAGEMENT
Gunhidecursor

DEFINITION

Reenables display of the cursor image in the open picture after a
Ghidecursor call. If the cursor is currently invisible, it is made
visible. A caller identification is passed as a parameter so that this
call will only enable the cursor display if the Ghidecursor that
originally hid the cursor had the same caller identification parameter.

PURPOSE

To provide a method by which the application can undo the Ghidecursor
function.

OPERATION

void Gunhidecursor(id)
int id;

EXAMPLES

BUGS

SEE ALSO

Gsetcursor, Gdrawcursor, Gsetcursorbounds, Gsetdefaultcursorbounds,
Gsetcursorimage, Gctlcursor, Ghidecursor.

 PGL MEMORY MANAGEMENT

Gmalloc PGL MEMORY MANAGEMENT Gmalloc
Page 189

DEFINITION

Returns a pointer to an area of the given size, in bytes, that can be
used by the function caller. This function does a Gtermin() and a
exit(1) if there is not enough free memory to satisfy request.

PURPOSE

To provide a centralized memory resource allocator. This function
also has debug malloc support.

OPERATION

char *Gmalloc(size)
int size;

EXAMPLES

BUGS

Debug malloc is 'ON' all the time (when DEBUG has been defined during
compile) and adds ~40 bytes to each allocation size.

SEE ALSO

Gfree, Gdebugmalloc, Gtestmem.

Gfree PGL MEMORY MANAGEMENT Gfree

DEFINITION

Returns the area of memory at the given address to the pool of free
memory.

PURPOSE

To provide a centralized memory resource deallocator. This function
also has debug malloc support. If Gmallocdebug has been enabled, this
function will check the headers and footers of all blocks of memory
currently allocated by Gmalloc to see if any have been written on.

OPERATION

void Gfree(block)
char *block;

EXAMPLES

BUGS

Debug malloc is 'ON' all the time (when DEBUG has been defined during
compile) and adds ~40 bytes to each allocation size.
This function checks each time to see if the block's header or footer,
created by Gmalloc, has been written over and prints an error if either
Page 190

has.

SEE ALSO

Gmalloc, Gdebugmalloc, Gtestmem.

Gdebugmalloc PGL MEMORY MANAGEMENT
Gdebugmalloc

DEFINITION

Sets/Resets the debug malloc state. When debug malloc is enabled, every
Gfree will check all blocks currently allocated by Gmalloc to see if
the area in front or in back of the block has been changed. Errors are
printed when they are detected.

PURPOSE

To provide a method to turn on and off software that checks for memory
areas that are being written to illegally.

OPERATION

void Gdebugmalloc(flag)
int flag; /* TRUE or FALSE */

Also setting the string "GMEMDEBUG" to something in the system
environment turns on malloc debug form the command line. I.E.

set GMEMDEBUG=1

turns it on.

EXAMPLES

BUGS

SEE ALSO

Gmalloc, Gfree, Gtestmem.

Gtestmem PGL MEMORY MANAGEMENT Gtestmem

DEFINITION

Tests all blocks currently allocated by Gmalloc to see if
the area in front or in back of the block has been changed. Errors are
printed when they are detected.

PURPOSE

To provide a method to check the integrity of memory from within the
Page 191

application at sensitive and/or suspicious places.

OPERATION

int Gtestmem()

Non-zero is returned if an error is detected.

EXAMPLES

BUGS

SEE ALSO

Gmalloc, Gfree, Gdebugmalloc.

 PGL BITMAP MANAGEMENT

Gresizebitmap(gp, npattern, newwid, newht) copy and shrink or enlarge bitmap.

G_BITMAP Gbitmap(pattern, sizex, sizey, depth) create a bitmap object.

Gbitmaprotate(gp, angle) NOT currently implemented.

Gloadbitmap(filename, type, gb) load standard bitmaps into bitmap object.

Gfreebitmappattern(gb) free memory associated with the data in a bitmap
object.

Gbitmap PGL BITMAP MANAGEMENT Gbitmap

DEFINITION

Returns a handle to a formalized bitmap definition built from the
given pattern, device coordinate height and width, and depth (number
of bits per pixel).

PURPOSE

To provide a reusable internal representation of standard bitmap data.
The GT_BITMAP thus returned can be used as the value of a GARG_PATTERN
attribute in a graphic context, as a background fill pattern for a
window, or as the definition of a user defined cursor.

OPERATION

GT_BITMAP Gbitmap(pattern, sizex, sizey, depth)
unsigned char *pattern;
int sizex, sizey;
Page 192

int depth;

EXAMPLES

BUGS

This GT_BITMAP that is created uses the callers pattern and therefore
the caller can not free this memory. In the future an option should be
provided where the pattern is copied to a private area in PGL memory.

SEE ALSO

Gresizebitmap, Grotatebitmap, Gloadbitmap, Gfreebitmappattern.

Gresizebitmap PGL BITMAP MANAGEMENT
Gresizebitmap

DEFINITION

The given GT_BITMAP is changed from the current height and width to the
given new device coordinate height and width. The buffer pointed
to by the given 'npattern' is filled with the new bit pattern. If
'npattern' is NULL then the old buffer where the old bit pattern is will
be used (i.e. when shrinking bitmaps, one can pass NULL in without
having to allocate a new buffer and later free the old. Obviously this
will not be the most efficient use of memory resources on the part of
the application).

PURPOSE

To provide a easy way for applications to resize their bitmap data. This
is useful if the application wishes to run on many platforms which have
varying video screen sizes and bitmap representations of graphic data
is to be used.

OPERATION

void Gresizebitmap(gb, npattern, newwidth, newheight)
GT_BITMAP gb;
unsigned char *npattern;
GT_DCOORD newwidth, newheight;

EXAMPLES

BUGS

No bitmap compression algorithm is perfect and this one is no exception,
important artifacts in the bitmap may be lost (the bitmap is not
examined and there is no artifact detection).

SEE ALSO
Page 193

Gbitmap, Grotatebitmap, Gloadbitmap, Gfreebitmappattern.

Grotatebitmap PGL BITMAP MANAGEMENT
Grotatebitmap

DEFINITION

The given GT_BITMAP is rotated through the given angle.

PURPOSE

To provide a easy way for applications to rotate their bitmap data.

OPERATION

void Grotatebitmap(gb, angle)
GT_BITMAP gb;
int angle;

EXAMPLES

BUGS

*** NOT IMPLEMENTED ***

SEE ALSO

Gbitmap, Gresizebitmap, Gloadbitmap, Gfreebitmappattern.

Gloadbitmap PGL BITMAP MANAGEMENT Gloadbitmap

DEFINITION

The given file is treated as bitmap pattern data and loaded into the
given GT_BITMAP.

PURPOSE

To provide a easy way for applications to load their bitmap data.

OPERATION

int Gloadbitmap(filename, type, gb)
char *filename;
int type;
GT_BITMAP *gb;

Zero is returned upon success. Non-zero errors include file
opening errors and unknown bitmaptype.
Page 194

Current supported bitmap types are:

G_BITMAPTYPE_SUNIM8

G_BITMAPTYPE_SUNRASTER

EXAMPLES

BUGS

There is not now a Gwritebitmap function.

SEE ALSO

Gbitmap, Gresizebitmap, Grotatebitmap, Gfreebitmappattern.

Gfreebitmappattern PGL BITMAP MANAGEMENT
Gfreebitmappattern

DEFINITION

The memory associated with the bitmap data in the given GT_BITMAP is
returned to the poll of free memory.

PURPOSE

To provide a way for applications to free their bitmap data. This
becomes more useful when the data area has been allocated internal to
the function Gbitmap when it creates the GT_BITMAP.

OPERATION

void Gfreebitmappattern(gb)
GT_BITMAP gb;

EXAMPLES

BUGS

SEE ALSO

Gbitmap, Gresizebitmap, Grotatebitmap, Gloadbitmap.

 PGL WINDOW STYLE MANAGEMENT

When window graphic objects are created they are assigned their parent's
window style. This style object contains information about how the window
and it's subsequent subwindows will look. This includes border width, height
and
colors, background patterns and colors, and is a convenient method of
controlling multiple windows with multiple looks. The window style is only a
Page 195

suggestion to the lower level window manager. The actual resultant style of a
window may be determined by calling Ginqwindow.

GT_WSTYLE Gwstyle(...) Create a window style object.

Ginqwstyle(wstyle, ...) Inquire a window style object.

Gmodwstyle(wstyle, ...) Modify a window style object.

Gdeletewstyle(wstyle) delete a window style object.

Gapplywstylelist(picture, subwstyle_flag,...) change the picture's window or
all subsequent subwindows to the given values.

Gapplywstyle(picture, subwstyle_flag, wstyle) change the picture's window or
all subsequent subwindows to the given window
style.

void Gsetrootwstyle(wstyle) sets the window style for the root window.

GT_WSTYLE Ggetrootwstyle() returns the window style for the root window.

void Gsetrootsubwstyle(wstyle) sets the default window style for subwindows of
the windows in the root window.

GT_WSTYLE Ggetrootsubwstyle() returns the default window style for subwindows
of

the windows in the root window.

GT_WSTYLE Gcopywstyle(wstyle) makes a copy of the wstyle and returns a handle
to it.

Gwstyle PGL WINDOW STYLE MANAGEMENT Gwstyle

DEFINITION

Returns the handle to the window style created from the given values.

PURPOSE

To provide a method of encapsulating window appearances for the given
values.

OPERATION

GT_WSTYLE Gwstyle(...)

The window style parameters are specified with a variable
argument list of GARG_ keyword, value pairs. An allowable
value for all keywords is 'G_IGNORE', casted appropriately,
which means that the particular value is to remain unchanged
Page 196

from what it was previously(what a previous open or applied
wstyle was).

Allowable keywords:Their allowable values:

GARG_WINDOWBORDERWIDTHGT_DCOORDThickness of border on
left and right sides of
window(in device
coordinates).

G_DEFAULTBORDERWIDTH is the default.

GARG_WINDOWBORDERHEIGHTGT_DCOORDThickness of border on
top and bottom sides of
window(in device
coordinates).

G_DEFAULTBORDERHEIGHT is the default.

GARG_WINDOWBORDERCOLORGT_ATTThe color of any fore-
ground graphics in the
border.

G_DEFAULTBORDERCOLOR is the default.

GARG_WINDOWBORDERBACKCOLORGT_ATTThe background (fill)
color of the border.

G_DEFAULTBORDERBACKCOLOR is the default.

GARG_WINDOWCOLORGT_ATT The color (and fill
color) of the interior
of the window.

G_DEFAULTWINDOWCOLOR is the default.

GARG_WINDOWBACKCOLORGT_ATTThe fill background
color of the interior
of the window(background
color of the monochrome
fill pattern the window
may have).

G_DEFAULTWINDOWBACKCOLOR is the default.

GARG_WINDOWROOTBITMAPGT_BITMAPThe fill pattern of the
interior of the window.

NULL (no pattern) is the default.

*Destroy

void Gdeletewstyle(wstyle);
GT_WSTYLE wstyle;

*Inquire

void Ginqwstyle(wstyle, va_alist)
GT_WSTYLE wstyle;
va_dcl
Page 197

Takes the input wstyle object and returns the values
requested. Valid 'GARG_' keywords are the same as those for
wstyle create.

*Modify

void Gmodwstyle(wstyle, va_alist)
GT_WSTYLE wstyle;
va_dcl

Takes the input segment graphics object and modifies the values
requested. Valid 'GARG_' keywords are the same as those for
segment create.

EXAMPLES

BUGS

Perhaps each side of the window should have a separate width associated
with it.

SEE ALSO

Gopenwstyle, Gpushopenwstyle, Gpopopenwstyle, Gapplywstyle,
Gapplywstylelist.

Gapplywstyle PGL WINDOW STYLE MANAGEMENT
Gapplywstyle

DEFINITION

Immediately applies the given window style object to the window of the
given picture. If the given picture is NULL, then the wstyle is applied
to the root window of the PGL window system if there is one.

PURPOSE

To provide a method of changing a window's appearance after it has been
created.

OPERATION

void Gapplywstyle(picture, wstyle)
int subwstyle_flag;
GT_OBJECT picture;
GT_WSTYLE wstyle;

subwstyle_flagint Whether to apply the style
to the picture's window
(G_FALSE) or as a default for
new subwindows of the picture's
window (G_TRUE).
Page 198

EXAMPLES

BUGS

If picture is NULL, this should be applied to the root of whatever
window system is managing the screen.

SEE ALSO

Gwstyle, Gopenwstyle, Gpushopenwstyle, Gpopopenwstyle, Gapplywstylelist.

Gapplywstylelist PGL WINDOW STYLE MANAGEMENT
Gapplywstylelist

DEFINITION

Immediately applies the given window style values to the window of the
given picture. If the given picture is NULL, then the values are
applied to the root window of the PGL window system if there is one.

PURPOSE

To provide a method of changing a window's appearance after it has been
created without having to create a wstyle object.

OPERATION

void Gapplywstylelist(picture, ...)
int subwstyle_flag;
GT_OBJECT picture;

The GARG keyword, value parameters valid for Gwstyle are all
valid here also.

subwstyle_flagint Whether to apply the style
to the picture's window
(G_FALSE) or as a default for
new subwindows of the picture's
window (G_TRUE).

EXAMPLES

BUGS

SEE ALSO

Gwstyle, Gopenwstyle, Gpushopenwstyle, Gpopopenwstyle, Gapplywstyle.

Gsetrootwstyle PGL WINDOW STYLE MANAGEMENT Gsetrootwstyle

DEFINITION

Sets the given window style to be the window style inherited by all
Page 199

windows that are created that have no parent (i.e. these windows are
not subwindows of any windows in the application. These windows there-
fore are considered subwindows of the root window).

PURPOSE

To provide a method of changing the default window appearance.

OPERATION

void Gapplywstylelist(picture, ...)
int subwstyle_flag;
GT_OBJECT picture;

The GARG keyword, value parameters valid for Gwstyle are all
valid here also.

subwstyle_flagint Whether to apply the style
to the picture's window
(G_FALSE) or as a default for
new subwindows of the picture's
window (G_TRUE).

EXAMPLES

BUGS

SEE ALSO

void Gsetrootwstyle(wstyle)
GT_WSTYLE wstyle;
GT_WSTYLE Ggetrootwstyle()
void Gsetrootsubwstyle(wstyle)
GT_WSTYLE wstyle;
GT_WSTYLE Ggetrootsubwstyle()
GT_WSTYLE Gcopywstyle(wstyle)
GT_WSTYLE wstyle;

 PGL LOW LEVEL INTERFACE

Provision has been made for the addition of other graphical output
hardware devices. Associated with a 'device' graphic object, these hardware
devices may be switched to and from at runtime. When a device becomes active
(i.e. a picture object that is associated with the device is opened) it's
associated hardware interface becomes the active interface. This interface is
standardized and consists of data and a number of functions that must be
supplied.

struct gdrawfunctions
{
void (*aline)/* draw arbitrarily sloped line */

(
short, /* x1 - x device coordinate point #1 */
short, /* y1 - y device coordinate point #1 */
Page 200

short, /* x2 - x device coordinate point #2 */
short /* y2 - y device coordinate point #2 */
);

 void (*putchr)/* put a text character at (x, y) */
(
short,/* x - device coordinate of lower left of bitmap char */
short,/* y - device coordinate of lower left of bitmap char */
char /* character - ASCII value of character */
);

void (*ellipse)/* draw an ellipse */
(
short,/* bit mask-denoting quadrants to be rejected/clipped */
short, /* yc - y device coordinate of center of ellipse */
short, /* xc - x device coordinate of center of ellipse */
short,/* a - semimajoraxis in device coordinates */
short /* b - semiminoraxis in device coordinates */
);

 void (*clear)/* clear rectangle to fillcolor */
(
short,/* x - device coordinate of lower left of area */
short,/* y - device coordinate of lower left of area */
short,/* x - device coordinate of upper right of area */
short /* y - device coordinate of upper right of area */
);

void (*pixel)/* set a pixel to the foreground color */
(
short,/* x - device coordinate of pixel */
short /* y - device coordinate of pixel */
);

void (*fline)/* draw horizontal line with current pattern */
/* If the pattern has a depth of 1(monochrome)
 then background pixels are set to the
 fillbackcolor and foreground pixels are set
 to the fillcolor */

(
short,/* x - device coordinate of left side of line */
short,/* x - device coordinate of right side of line */
short /* y - device coordinate of line */
);

 void (*fclear)/* fill rectangle area with fillpattern */
/* If the pattern has a depth of 1(monochrome)
 then background pixels are set to the
 fillbackcolor and foreground pixels are set
 to the fillcolor */

(
short,/* x - device coordinate of lower left of area */
short,/* y - device coordinate of lower left of area */
short,/* x - device coordinate of upper right of area */
short /* y - device coordinate of upper right of area */
);

void (*fpattern)/* install pattern as current fill pattern */
(
short,/* sizex - #pixels for width of bitmap */
Page 201

short,/* sizey - #pixels for height of bitmap */
char */* pattern - address of data bits, if NULL then solid

 fill (i.e. this then equivalent to clear) */
);

void (*rop)/* display pattern starting at pixel (x, y) */
/* The coordinate (x, y) may and often will be outside
 of the video screen bounds */

(
short,/* x - device coordinate of left of pattern */
short,/* y - device coordinate of bottom of pattern */
short,/* mask - indicating sides of rectangle to be clipped */
struct gbitmap * /* address of structure defining pattern */
);

void (*setwritemode)
(
GT_ATT/* what logical operation to use to write to pixels */
);

void (*setcolor)
(
GT_ATT,/* foreground color */
GT_ATT, /* fill color */
GT_ATT/* fill background color */
);

void (*setclipbounds)
(
short,/* x - device coordinate of left of bounds */
short,/* y - device coordinate of bottom of bounds */
short,/* x - device coordinate of right of bounds */
short /* y - device coordinate of top of bounds */
);

};

Gvideodriver PGL LOW LEVEL INTERFACE Gvideodriver

DEFINITION

Registers and installs new video hardware device and returns the
handle to it.

PURPOSE

To provide a method by which alternate output devices can be installed
in place of the current one.

OPERATION

GT_DRIVER Gvideodriver(buffer, xmin, ymin, xmax, ymax, depth, numcolors,
drawfunctions, init, termin, open, close, videomode, driverdata)

unsigned char *buffer;
short xmin, ymin, xmax, ymax;
int depth;
int numcolors;
struct gdrawfunctions *drawfunctions;
Page 202

GT_FNPTR init, termin, open, close;
int videomode;
char *driverdata;

The following variables are usually used by and can be inquired by the
actual video driver:

buffer

Address of the video buffer(if any). If NULL then a
buffer is allocated internally for the size determined
by the given device dimensions and depth parameters
using the formulae:

size=(((xmax - xmin) * depth + 7) >> 3) * (ymax - ymin).

xmin, ymin, xmax, ymax

The device coordinates of the lower left hand corner and
the upper right hand corner of the video device.

depth

The number of bits per pixel.

numcolors

The number of colors. This variable along with the given
'depth' and 'xmin, ymin, xmax, ymax' determine the byte
width and overall size of the buffer.

drawfunctions

The address of an array of function pointers that are
to handle the low level drawing for this video hardware
device.

void init(videodriver)
GT_DRIVER videodriver;

The address of the function responsible for the
initialization of the video hardware device.

void termin(videodriver)
GT_DRIVER videodriver;

The address of the function responsible for the
termination of operations on the video hardware device.
This function is called when graphics are terminated by
a Gtermin() function call or when a new videodriver
device is installed in a device graphic object.

void open(videodriver)
Page 203

GT_DRIVER videodriver;

This is called whenever any graphic device object this
videodriver is associated with is opened (i.e.
previous draws or transformations were to a different
graphic object device).

void close(videodriver)
GT_DRIVER videodriver;

This is called whenever any graphic device object this
videodriver is associated with will no longer be used
until the next 'open' function call.

videomode

An identification integer that can be used by the video
driver. Ignored by PGL.

driverdata

A pointer the video driver may use if the videodriver
data is insufficient.

EXAMPLES

BUGS

The close function is not used at this time.

SEE ALSO

Ginqvideodriver, Gmodvideodriver, Gdeletevideodriver.

Ginqvideodriver PGL LOW LEVEL INTERFACE Ginqvideodriver

DEFINITION

Inquires about the values of internal data in a videodriver device
object.

PURPOSE

To provide a method by which video hardware device drivers can determine
information about their driver state. (I.E. some drivers support
multiple models of their device, such as the pixmap driver which
supports all sizes of pixmaps in RAM).

OPERATION

void Ginqvideodriver(videodriver, GARG_keyword, &value,...)
GT_DRIVER videodriver;
int keyword;
Page 204

*value;

The following variables can be obtained by using the following GARG
keywords:

buffer GARG_BUFFER

Address of the video buffer(if any).

xmin, ymin, xmax, ymaxGARG_DEVICEDIMENSIONS

The device coordinates of the lower left hand corner and
the upper right hand corner of the video device.

depth GARG_DEPTH

The number of bits per pixel.

numcolors GARG_MAXNUMCOLORS

The number of colors. This variable along with the given
'depth' and 'xmin, ymin, xmax, ymax' determine the byte
width and overall size of the buffer.

videomode GARG_VIDEOMODE

An identification integer that can be used by the video
driver. Ignored by PGL.

driverdata GARG_USERINFO

A pointer the video driver may use if the videodriver
data is insufficient.

EXAMPLES

BUGS

The drawfunctions, init, termin, open, close parameters cannot be
inquired at this time.

SEE ALSO

Gvideodriver, Gmodvideodriver, Gdeletevideodriver.

Gmodvideodriver PGL LOW LEVEL INTERFACE Gmodvideodriver

DEFINITION

Modifies the values of internal data in a videodriver device object.

PURPOSE
Page 205

To provide a method by which video hardware device drivers can tailor
information about their driver state.

OPERATION

void Gmodvideodriver(videodriver, GARG_keyword, value,...)
GT_DRIVER videodriver;
int keyword;
value;

The following variables can be modified by using the following GARG
keywords:

buffer GARG_BUFFER

Address of the video buffer(if any).

xmin, ymin, xmax, ymaxGARG_DEVICEDIMENSIONS

The device coordinates of the lower left hand corner and
the upper right hand corner of the video device.

depth GARG_DEPTH

The number of bits per pixel.

numcolors GARG_MAXNUMCOLORS

The number of colors. This variable along with the given
'depth' and 'xmin, ymin, xmax, ymax' determine the byte
width and overall size of the buffer.

videomode GARG_VIDEOMODE

An identification integer that can be used by the video
driver. Ignored by PGL.

driverdata GARG_USERINFO

A pointer the video driver may use if the videodriver
data is insufficient.

EXAMPLES

BUGS

The drawfunctions, init, termin, open, close parameters cannot be
modified at this time.
If the device dimensions change and the buffer was allocated internally
the buffer is not freed and reallocated.

SEE ALSO
Page 206

Gvideodriver, Ginqvideodriver, Gdeletevideodriver.

Gdeletevideodriver PGL LOW LEVEL INTERFACE Gdeletevideodriver

DEFINITION

Deletes any memory that has been allocated to support the given
videodriver object. This includes the video 'buffer' if it was
allocated internally during the given videodriver object's creation.

PURPOSE

To provide a method by which video hardware objects can be destroyed.

OPERATION

void Gdeletevideodriver(videodriver)
GT_DRIVER videodriver;

EXAMPLES

BUGS

SEE ALSO

Gvideodriver, Ginqvideodriver, Gmodvideodriver.

 PGL LOW LEVEL INTERFACE

Application window drivers are also supported.

#include "graphics.h"

The following are examples of code that create the classical
text string 'hello world' in a window.

/**/
main()

{
GT_OBJECT window;
GT_OBJECT view;
GT_OBJECT picture;

Ginit();
Gdevice(0);
Page 207

);
window = Gwindow(GARG_SCREEN, G_MINSCREEN, G_MINSCREEN, G_MAXSCREEN,
G_MAXSCREEN, 0);

view = Gview(GARG_VIEWPORT, G_MINVIEWPORT, G_MINVIEWPORT, G_MAXVIEWPORT,
G_MAXVIEWPORT, GARG_WORLD, G_MINWORLD, G_MINWORLD, G_MAXWORLD, G_MAXWORLD, 0

picture = Gpicture(view, window, G_OPENOBJECT);
Gopen(picture);
Gdrawtext((GT_COORD)0, (GT_COORD)0, "Hello World");
Gtermin();
}

/**/
main()

{
GT_OBJECT window;
GT_OBJECT view;
GT_OBJECT picture;
GT_OBJECT segment;

Ginit();
Gdevice(0);
window = Gwindow(GARG_SCREEN, G_MINSCREEN, G_MINSCREEN, G_MAXSCREEN,

G_MAXSCREEN, 0);
segment = Gsegment(0);
Gopen(segment);
Gtext((GT_COORD)0, (GT_COORD)0, "Hello World");
view = Gview(

GARG_VIEWPORT,
 G_MINVIEWPORT, G_MINVIEWPORT, G_MAXVIEWPORT, G_MAXVIEWPORT,
GARG_WORLD,
 G_MINWORLD, G_MINWORLD, G_MAXWORLD, G_MAXWORLD,
GARG_SEGMENT,
 segment,
0);

picture = Gpicture(view, window, G_OPENOBJECT);
Gdraw(picture);
Gtermin();
}

/**/
main()

{
GT_OBJECT window;
GT_OBJECT view;
GT_OBJECT picture;
GT_OBJECT segment;

Ginit();
Gdevice(0);
window = Gwindow(

GARG_SCREEN,
 G_MINSCREEN, G_MINSCREEN, G_MAXSCREEN, G_MAXSCREEN,

0);
segment = Gsegment(0);
Gopen(segment);
Page 208

Gtext((GT_COORD)0, (GT_COORD)0, "Hello World");
view = Gview(

GARG_VIEWPORT,
 G_MINVIEWPORT, G_MINVIEWPORT, G_MAXVIEWPORT, G_MAXVIEWPORT,
GARG_WORLD,
 G_MINWORLD, G_MINWORLD, G_MAXWORLD, G_MAXWORLD,
GARG_SEGMENT,
 segment,
GARG_PROC,

our_window_event_handler,
0);

picture = Gpicture(view, window, G_OPENOBJECT);
Gdraw(picture);
Gwaitforevent(G_KEYEVENT);
Gtermin();
}

#define our_zoominmaskG_M_CLICK
#define our_zoominkeyG_M_CLICK
#define our_zoomoutmaskG_R_CLICK
#define our_zoomoutkeyG_R_CLICK
#define our_panmaskG_M_WENTDOWN
#define our_pankeyG_M_WENTDOWN

static int our_window_event_handler(event)
GT_EVENT event;

{
if ((Gevent_type(event) & our_zoominmask)

&& (Gevent_value(event) == our_zoominkey))
{
Gzoom(view, x, y, GF_ZOOMSHIFT, G_ZOOMIN);
return(0);
}

if ((Gevent_type(event) & our_zoomoutmask)
&& (Gevent_value(event) == our_zoomoutkey))
{
Gzoom(view, x, y, GF_ZOOMSHIFT, G_ZOOMOUT);
return(0);
}

if ((Gevent_type(event) & our_panmask)
&& (Gevent_value(event) == our_pankey))
{
Gpan(Gevent_view(event), G_MINWORLD,

 G_MINWORLD,
 G_MAXWORLD,
 G_MAXWORLD);

return(0);
}

return(1);
}

#include "toolkit.h"
Page 209

/**/
main()

{
GFT_OBJECT form;

Ginit();
Gdevice(0);
GFinit();
form = GFform(

TKARG_SCREEN,
 G_MINSCREEN, G_MINSCREEN, G_MAXSCREEN, G_MAXSCREEN,

TKARG_ZOOMINEVENT,
our_zoominmask, our_zoominkey,

TKARG_ZOOMOUTEVENT,
our_zoomoutmask, our_zoomoutkey,

TKARG_PANEVENT,
our_panmask, our_pankey,

0);
GFbutton(form,

 TKARG_DESCX, 0,
 TKARG_DESCY, 0,
 TKARG_DESCTEXT, "HelloWorld",
 TKARG_PROC, our_button_event_handler,
 0);

GFpost(form);
Gwaitforevent(G_L_CLICK);
GFtermin();
Gtermin();
}

static int our_button_event_handler(button, event)
GFT_OBJECT button;
GT_EVENT event;

{
return(1);
}

/**/

 PGL QUESTIONAIRE

Please answer this questionaire if you have an opinion and the time.

1. make array structs have type so don't need compile funcs?

2. make wascii check ctxdiffs so it can be a function?

3. make setobj and transobj update extrema so they can be called too?

4. Should the cursor routines take a picture object as a parameter rather
than using the current open picture?
Page 210

Version 1.0 Additions

1. The functions Gmodarc, Gmodcall, Gmodellipse, Gmodline, Gmodpline,
Gmodpolygon, Gmodrect, and Gmodpolygon have been added. Also
the Guserobj object and support functions Gmoddraw, Ginqdraw,
and Gmodtransform, Ginqtransform.

2. Library size has been reduced by removing the 'C' source code
write/read functionality and by removing the object description
(struct gdebug) inquire functionality. These are available in the
new PGL toolkit library.

3. Bugs have been fixed.
Page 211

