
Introduction

DRAFT VERSION 1.0

Software Farm, Inc. 211 HighView Dr.
Boulder, Colorado 80304

303 546-6503 FAX: 303 546-6708
A Framework (FRED) and
Framework Language (ETHYL)

Michael L. Davis

Software Farm, Inc. (mdavis@csn.net)

September 22, 1995
Note: This is a system that is very much in-progress.
As such this paper is being distributed to a very small
number of people in order to gather feedback and to
provide a ‘heads-up’ about what the FREDÐYL
product from Software Farm is all about. This product
was named VisualADE 3.0 but sounded so much like
IBMs visualAge that we are looking at using other
names.

Abstract

As the industry matures the feature set of the aver-
age software application becomes more well-
defined. This allows frameworks to be written that
supply these features. Usually these frameworks are
accessed by using 3GL languages and are therefore
difficult to use. This paper decribes a scalable archi-
tecture, framework and ‘framework language’ that
‘configures’ or ‘programs’ a framework at a very high-
level of abstraction. This ‘framework language’ is
what is then used to do the work to connect the fea-
tures together to create an application.

As usual with high-levels of abstraction, productivity
increases come at the expense of generality. For the
(very) expert programmer customization is possible
by modifying (deriving specialized classes from) the
framework source code. However, as the quality of

the framework improves over time this will rarely be
necessary.

Keywords - Frameworks, User Interface, User Inter-
face Management System, Framework Patterns,
Framework Configuration Languages

1.0 Introduction

The holy grail of software programmers is to create a
software development environment so advanced and
so easy to use that many of the tedious and/or repet-
itive details are avoided and the process of develop-
ing applications becomes exclusively one of creative
customization.

This complements the popular notion of the software
IC. A set of Software ICs is like an automobile parts
catalog. A customizable feature-full framework is like
a factory-built automobile. Many people find that cars
are easier to build by purchasing one that is already
built and swapping out parts as opposed to building
one from parts out of the parts catalog (which is
admittedly better than starting with a forge and ham-
mer and file).
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 1 of 33

Introduction

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 2 of 33

DRAFT VERSION 1.0

Very Large Object
(Highly functional, optimized, bug-free, 3GL c

Very Large Object
(Highly functional, optimized, bug-free, 3GL code)

Document

Entity Entity

Entity

Entity

Entity

Very Large Object
(Highly functional, optimized, bug-free, 3GL code)

Small, standardized,
Very-Large-Object, Entity, Relation,
and Document API

Relation Objects

FIGURE 1. The Architecture: Overall design

The Architectural Design

DRAFT VERSION 1.0
Similarly, many engineers assemble PCs by combin-
ing motherboards and power supplies and pre-built
containers. They do not usually start with chips and
solder and a piece of sheet-metal. For example con-
trast a graphics accelerator chip with a graphics
accelerator card.

There are two general methods used to build things:

• by building something the ground up using small
parts, usually used to go beyond the current state
of the art and derive ‘value’ by virtue of the tech-
nological advance,

• by connecting together currently available tech-
nology to build something useful and which
derives its value from the way in which the parts
are combined.

The goal of this system is to assist both methods of
development by 1) providing the ability to add new
technology by extending the system using low-level
languages like C++ (assuming that there are some
parts of the system that are in common with other
applications) and 2) providing a small number of
(very) large objects that can be customized and tied
together in ways that generate different applications.
The focus of this system is always on goal #2.

This paper covers the architecture of the system, the
language interface to the system, the built-in func-
tionality provided with the system, examples of the
use of the system, and finally the conclusion and the
description of future work.

1.1 Nomenclature

The terminology of software system architectures is
still non-standardized and so the nomenclature used
in this paper will be briefly defined. An architecture is
the high-level design of an application. A framework
is the implementation of an architecture. The pur-
pose of an architecture and framework is to organize
software into functional groups and to provide func-
tionality that is 1) common a all groups with in the
application and/or 2) common to a group of applica-
tions. An application is a group of software compo-
nents collected together into a unified whole. A
component is a subset of an application that supplies

a single service. The semantic component is the part
of an application that contains the software related to
the purpose of the application. The presentation
component is that part of the application that sup-
ports the user in viewing and interacting with the
application. A functional component is a semantic or
presentation component. An entity is a data object.
Relations are objects that reference a source and
destination component. The system is the totality of
architecture, framework, language and supporting
functionality.

2.0 The Architectural Design

This is a data-centric or document/view architecture.
It consists of a number of independent components
and entities that are connected together with rela-
tions. Some of the components are prebuilt and
come with the system while others must be written to
provide needed functionality unique to a particular
application.

It is the supposition of this architecture that many (if
not all) applications can be represented, if necessary
at a macro level, by this limited set of constructs.

2.1 Components

Components are usually used for viewing and/or edit-
ing entities. Components may have Fields exactly like
Entities (see below).

2.2 Entities

Entities are the semantic data objects of the applica-
tion. They contain a list of Fields, each of which has a
name, type, value, range constraints, and other infor-
mation. The field type can be a built-in type (e.g.:
text, int, float) or a derived application type (called a
FieldDefintion).

2.3 Relations
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 3 of 33

The Architectural Design

DRAFT VERSION 1.0

Entity Undo/Redo

Persistance

Manager
 Document

Framework

User Interface
System

Editor/Debugger

Graphics
System

FIGURE 1. The Support System of the Framework

Document

Entity

Entity

Manager

Manager

Test Data
Generator Manager

 Animation
Relations provide the only means of communication
and data transfer between components. Relations
may have Fields exactly like Entities.

2.3.1 Control Flow
Control flow is the means by which an event occur-
ring in one component causes an event to occur in
another component.

The control flow for an application is specified
entirely by the MessageFlow relations. (see Figure 1
on page 3). MessageFlow relations specify which
messages to send to which components, entities or
relations in response to a particular message
received. Messages are generated in response to
events which are usually, bot not necessarily, gener-
ated by the user. Messages are objects that have a
name and a list of (untyped) arguments.

FIGURE 1. MessageFlow relations in the Architecture.

2.3.2 Information Flow
Information flow is the means by which data is trans-
ferred between components and is specified by the
DataFlow and View relations.

• The Dataflow Relation

The Dataflow relation specifies an bi-directional con-
straint on the values of two data items. These data
items are often Fields of an Entity. However they can
also be aggregate collections of data from many enti-
ties (for example the names of all students of Profes-

Component Entity

Component

n

n
n

n

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 4 of 33

The Architectural Design

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 5 of 33

DRAFT VERSION 1.0

Viewer/Editor

Entity

Entity

Document

Entity

Viewer/Editor

Viewer/Editor

View

View

View

DataFlow

ViewObject

ViewObject

ViewObject

ViewObject
MessageFlow

Connection

View

MessageFlow

An User Interface Window

Simulator
Graphics
Editor

ViewObject

DataFlow

View

FIGURE 1 Th A hit t A l li ti

The Support System

DRAFT VERSION 1.0
sor X can have a DataFlow relation with the contents
of a GUI scrolledList widget).

If the value of one end of a DataFlow constraint
changes then the other is automatically updated by
the system. This relation can be constrained to be
uni-directional.

A Filter object may be attached to the DataFlow rela-
tion. The Filter object performs a test on a set of
components at one end of the DataFlow relation to
determine which components are to be included as
part of the DataFlow relation.

Similarly a Format object may be attached to the
DataFlow relation. The Format object extracts one or
more values from each component at one end of a
DataFlow relation and formats the values into text
strings using a ‘C’ language sprintf-like specification.

FIGURE 2. DataFlow Relations in the Architecture.

• The View Relation

The View relation assigns a component, Relation or
Entity (the subject) to a component. This component
then can view and/or modify the subject. Optionally
the subject is represented in the component by a dif-
ferent object (called a viewObject). For example an
Entity (the subject) may be represented by an icon
(the viewObject) in a graphical editor (the compo-
nent).

FIGURE 3. View Relations in the Architecture.

2.3.3 Connections
Connections are relations that have a name and a
source and destination component. Each connection
type also has a list of valid source and destination
components. Only components from these lists are
able to have this type of connection between them. In
this way design rules about connectivity are estab-
lished and enforced.

3.0 The Support System

A number of pre-built components are supplied/built-
in to the framework. Some of these must be explicitly
declared by the programmer and some are implicitly
always available (these will be indicated by a *).

The built-in system components are:

(see the Appendix for a more detailed description of
this support system)

3.1 General
• Application

• Help Manager

• Internationalization Manager

• Document

Component Entity

Component

n

n
n

n

Component Entity

Component

n

n

n

n

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 6 of 33

The Language

DRAFT VERSION 1.0
3.2 The User Interface System
• Window

• AutomaticWindow

• Menubar

• Panel

• Layout

3.3 Graphics
• Editor

• Graphics

• IconWell

• Locator

• Magnifier

• AnotherView

3.4 Animation
• Engine

3.5 Debugging Assistance
• TestDataGenerator

• Debugger

3.6 Programmer Assistance
• Framework Editor

3.7 The Persistence Manager*

3.8 The Undo/Redo Manager*

4.0 The Language

The goal of the language is to be a terse but very
readable, high-level but complete, specification for
the generation of modern GUI-rich applications. By
terse it is meant that the language resembles a pro-
gramming language more than the English language.

By readable it is meant that one does not have to
refer to a manual to understand someone elses
source code. By high-level it is meant that, as much
as possible, only information that is absolutely neces-
sary to create the application is required, not gratu-
itous information that helps the author of the
framework or is required by the underlying toolkits.
And by complete it is meant that the language should
support all reasonable feature requests. This last is
accomplished by making the components large and
highly customizable and by allowing for language
extensions using C++.

The language is used to specify class definitions,
relations and declarative constraints. Instances and
instance operations are not referenced directly. The
language is compiled at runtime into memory-resi-
dent class descriptions, relations and constraints.
The file containing source code in this language is
called a description file.

The language has some basic object-oriented capa-
bilities. Entities support multiple inheritance (virtual
base classes, changing of inheritance trees at runt-
ime, and static class data are not supported at this
time).

Attribute values are specified by using the keyword-
value syntax (i.e. color = yellow). Any name in a key-
word-value pair can be an environment variable by
prefacing it with a ‘$’ (i.e. color = $BackgroundColor).
Unless otherwise indicated, all keywords are case-
insensitive.

Lines of text can optionally end with a semi-colon. If a
pound sign ‘#’ character or double slash ‘//’ appear
anywhere in a line of text, the text to the right of the
character(s) is ignored. Quotes ‘”’ may be used for
any value and must be used if a value contains a
special character (i.e. one of , ,, #, //,), ().

4.1 Classes

Classes are created by specifying the type and name
of the class and then the class body:

ClassType ClassName
{
}

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 7 of 33

The Language

DRAFT VERSION 1.0
Each class type has type-specific attributes, type-
specific subComponents and type-specific messages
that it responds to.

The available classes are:

• Application

• Editor

• IconWell

• Graphics

• Window

• AutomaticWindow

• Panel

• Menubar

• Engine

• TestDataGenerator

• Debugger

• Connection

• Entity

• Document

4.2 Attributes

Each class can have type-specific attributes
assigned values by specifying the Attributes of the
class:

ClassType ClassName
{
Attributes(AttributeName = AttributeValue, ...)
}

Each class can have an type-specific subComponent
specified in the following manner:

ClassType ClassName
{
SubComponentType(AttributeName =

AttributeValue, ...)
}

4.3 Fields

Each class may have fields added by the following
method:

ClassType ClassName
{
FieldType(name = FieldName,

default = DefaultValue,
minimum = MinumumValue,
maximum = MaximumValue,
step = ValueIncrement)

}

Available FieldTypes are:

• Int

• Float/Real

• Text

• Enum

Available Field attributes are:

• name

• default

• minimum

• maximum

• step

• minimumLength

• maximumLength

• readOnly

• ReadWritePermissions

Any field may be used as a reusable FieldDefintion.
For example:

ClassType ClassName
{
Int(name = MyInteger, default = 0)
}

ClassType2 ClassName2
{
MyInteger(name = MyInteger2);
MyInteger(name = MyInteger3);
}

Or FieldDefinitions may be defined by the following
method:

ClassType ClassName
{
FieldDefintion(name = MyInteger, type = int,

default = 0)
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 8 of 33

The Language

DRAFT VERSION 1.0
}

4.4 Messages

Messages are named objects that are sent to compo-
nents. Messages may contain a list of named argu-
ments and their values. Messages supported by all
components are:

• save

• saveAll

• Load

• Refresh

• Delete

• Create

• Copy

• setValue(keyword = value)

• addView(name = viewName)

• removeView(name = viewName)

An example of the setValue message is:

DestinationComponent.setValue(
attributeName = attributeValue)

4.5 MessageFlows

Each class can have message handling extended by
the following method:

ClassType ClassName
{
MessageFlow(

message = IncomingMessageName,
action = DestinationClassType.outgoing-
MessageName)

}

For example:

ClassType ClassName
{
MessageFlow(message = Selected, action =

myWindow.popup)
}

4.6 DataFlows

Each class can have data transfer and data con-
straints added by the following methods:

ClassType ClassName
{
DataFlow(sourceClassType.field

= destinationClassType.field)
}

For example:

ClassType ClassName
{
DataFlow(.myScrolledList.contents

= myApplication.contents,
direction = DestinationToSource,
filter = myFilter)
)

}

Where myFilter is defined as:

Filter myFilter
{
Attributes(

format =
%-10.10name %-40.40description)

}

Conversely, the DataFlow relation may be created by
the following method:

scrolledList(name = myScrolledList,
contents = @(r)myApplication.contents

Note that this syntax (the ‘@’) does not provide a way
to reference a Filter object. The ‘@’ indicates that the
following text is to be interpreted as an address from
which to get a value. The optional ‘(r)’ indicates that
the constraint is directional and that therefore the ref-
erenced address is only to be read, not written.

4.7 Views

Each class can have a view added by the following
method:

ClassType ClassName
{

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 9 of 33

Language examples

DRAFT VERSION 1.0
View(name = myView, viewer = myView,
viewObject = myViewObject)

}

For example:

Graphics myIcon
{
Icon(filename = myIconPixmap.xpm)
}

Editor myGraphicsEditor
{
}

ClassType ClassName
{
View(name = myView, viewer = myGraphicsEd-

itor, viewObject = myIcon)
}

4.8 Connections

Each class can have data transfer and constraints
added by the following methods:

Connection connectionClassName
{
Attributes(

source = sourceClassName1, des-
tination = destinationClassName1,

source = sourceClassName2, des-
tination = destinationClassName2)

}

5.0 Language examples

The following program does:

6.0 Discussion of the strengths
and weaknesses of the
Language

6.1 Strengths

Declarative data constraints are easy to use.

Large amounts of graphics user-interface and graph-
ics editor features easily available.

Automatic design rule checking on connections.

Automatic value checking on Entity fields.

6.2 Weaknesses

Uses C-like language structures that some non-pro-
grammers may find difficult to learn and use.

Entity-Entity relations are vague. If such relations are
specified then the relations are attached to particular
entities based on other relations that may already
exist between the entities.

7.0 Discussion of the strengths
and weaknesses of the
Framework

7.1 Strengths

Automatic session management, persistence, and
undo/redo functionality are provided ‘free of charge’.

Automatic generation of window contents and layouts
for fast prototyping.

Integrated system enables easy generation of test
data.

7.2 Weaknesses

Currently the persistent store data format is very
dependant on the components and their functionality
(i.e. a component removes an attribute or changes
an attributes name) as is the Undo/Redo file format
(i.e. a component removes a message capability or
changes it’s name).
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 10 of 33

Experience

DRAFT VERSION 1.0
7.3 Evolvability

Any framework implemented today encounters the
onslought of continuously changing and evolving
standards. Which I18N scheme to support, which
distributed object methodology, which version of
which toolkits, the list goes on and on. To address
this issue the expected evolvablity of the system will
be examined.

The evolvability of the system is enhanced if the fol-
lowing can be changed without affecting the other
major parts of the system:

• Components and Component functionality

• Language definition

• Framework Editor

• Underlying toolkits

These areas are indeed independent of each other.

7.4 Size and speed of the resulting
application

Both speed and size of an application using this
framework are necessarily larger than if the applica-
tion were ‘hand-coded’. However the code size will
be smaller if there are a large number of windows
which are automatically generated as opposed to
being created by a code-generating GUI builder. And
the speed will be greater if a highly optimized compo-
nent is used instead of one hastily thrown together to
make a ship date. And finally, size and speed are
becoming less and less of an issue at the same time
programmer productivity and application robustness
are becoming leading concerns of software develop-
ment.

8.0 Experience

The following sections describe our experience with
developing applications using the FRED system.

8.1 Implementation

The core of the framework is implemented in about
5000 lines of C++. The run-time class system and
language parser in less than 3000 lines of code. The
relatively small amount of code is considered an
asset when it comes to understanding and modifying
the system.

Subclassing components to add functionality seems
to be relatively easy and this will become increas-
ingly more natural as the components mature.

Adding new components is straight forward, though
there are quite a number, ten or so, of public func-
tions that must be supported by each component.
Some automatic registration functionality would
reduce the burden of informing the language parser
about the new component. Obviously adding new
components is an important feature for healthy pro-
gramming systems (i.e. Visual Basic VBXs, 3D Stu-
dio plug-ins, etc.).

8.2 Application Examples

This section describes the experience of building
application using the system.

8.2.1 Ad-Hoc prototypes
Quick prototypes have been created with the system
with various levels of success. The quality of the pro-
totype implementation seems to be judged by the
quality of a number of specific features:

• GUI appearance

• Graphics appearance

and not by other seemingly unrelated features:

• Context sensitive help

• Syntax checking and validation

• Robustness

Of course this is true of all prototypes and can be
addressed by providing a number of examples of
attractive GUIs and graphics objects.

8.2.2 A Direct-Manipulation Editor for Displaying
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 11 of 33

Related Work

DRAFT VERSION 1.0
and Editing Diagrams

This application is a composite of the currently popu-
lar diagram editors as popularized by Visio and 20 or
30 other similar applications. As such the feature set
is pre-determined and the development process
becomes one of incrementally adding all of the fea-
tures commonly associated with these class of appli-
cations. The addition of some of these features
requires the use of C++ to expand the functionality of
one or more components. It is expected that these
new features:

• will be valuable to other applications in the future,
and

• will reach a critical mass such that new require-
ments can be satisfied by functionality already
present in the system.

This application is currently under development and
is being written in the ETHYL language (eventually
this may become a component itself).

8.2.3 An animation tool

This application modified the system using C++ to
create a subclass of the Engine component (to add
animation functionality) and of the Editor component
(to add IC-like graphics primitives that represent this
application’s Entities).

9.0 Related Work

• Script languages (such as TkL and the CDE Korn-
Shell) are similar in that there is a language which
has to access to large featurefull libraries. How-
ever these are largely procedural and lack support
for describing the semantic data model. They are
also traditionally not very readable.

• User interface languages (such as Motif UIL)
specify UI layout and widgets in a declarative
manner. However, these are usually quite weak
when it comes to specifying what to do when the
user interacts with the UI. Also, information about
how the widgets are related to each other and
how they are tied to the semantic data of the
application is absent.

• The OpenDOC architecture, which is a document/
view architecture, is similar to this architecture
and has much to recommend it. However, it hasn’t
a high-level configuration language and must be
programmed in low-level languages like C++.

• The ODMG specification language of the pro-
posed standard for OODBMSs has many declara-
tive commands that describe how data is related
to other data. And similar to ETHYL, it maintains
relations between objects automatically. However,
it limits itself to this semantic data object domain
and the language has a number of awkward pecu-
liarities.

• The SmallTalk language is similar to FRED in that
it has a large number of support classes that are
configured and customized to develop applica-
tions. But the classes are small and there isn’t a
standard API for all components (beyond the gen-
eralized message handling capability). It also
lacks a general glue class (i.e. for relations).

• The Abstraction-Link-View architecture [Hill,
1992] uses a sophisticated constraint manager to
manage the links between Abstraction (seman-
tics) and View (presentation). Unfortunately con-
trol of the application remains in the semantic
component.

10.0Conclusion and Future Work

The FRED architecture provides a useful implemen-
tation paradigm for almost all programs including
those containing graphics, databases, multimedia
and external processes.

The FRED framework provides an advanced, easy to
access, highly functional feature set available to the
programmer using the ETHYL language.

Below is a list of items that are on the to-do list. This
is by no means complete but communicates fairly
well the directions FRED and ETHYL are headed in.

10.1 Language
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 12 of 33

Conclusion and Future Work

DRAFT VERSION 1.0
10.1.1Built-in and custom type-convertors.

Type conversion occurs when a DataFlow relation
connects Fields of different types. At the present time
both types at the end of a DataFlow relation are con-
verted to text strings when assigned to one another.
Type convertors would also be used to specify a
range-map feature. This feature maps ranges in an
input value to output values (for example 0.0-0.2
maps to blue, 0.20-0.40 maps to green, ...)

10.1.2Views for individual Fields.

The usefulness of this feature becomes more clear
when one considers views being assigned to Field-
Defintions. For example one could specify that all
integers will be mapped to slider widgets in a particu-
lar type of Panel and mapped to graphical dials in a
particular graphics Editor.

10.1.3Add more data-manipulation features to the
TestDataGenerator

Add genetic algorithm capabilities to the TestDat-
aGenerator so that the user or programmer can inter-
actively evolve test data sets. The generation of
directed-acyclic-graphs, of sample data-sets, of win-
dow layouts using genetic techniques are all useful
pursuits in and of themselves. Giving the program-
mer access to these features for testing and for inclu-
sion in the resultant application is expected to be
quite useful.

10.1.4Add general cross-platform Drag-N-Drop
feature

The IconWell currently uses some Drag-N-Drop ter-
minology and the goal would be to expand this so
that every object in the system is able to be a Drag-
N-Drop source and/or target.

10.1.5Support for editing multiple documents
simultaneously.

There is not now support for this feature.

10.1.6Resolve Undo/Redo effects in different

windows.

Undo/Redo is an application wide feature. If a user
makes a change to window A, then a change to win-
dow B, then presses the undo button in window A,
the undo will occur in window B, as it was the last
operation executed.

10.2 Standards

10.2.1Support for distributed objects

Integration with distributed object standards (Corba/
OLE) using relations that span processes. The fact
that only relations link components together and that
components support a standard API will make this
relatively straight forward and invisible to the pro-
grammer/user of the system.

10.2.2Support for commercial databases

Support for commercial OODBMS and RDBMS prod-
ucts, perhaps by subclassing off of Persistence Man-
ager.

10.2.3Support for commercial GUI builders.

This is an enhancement to the system as well as the
language so that code and/or UIL generated by com-
mercial GUI builders can be referenced in the lan-
guage just like widgets generated inside the
language.

10.2.4Port to MS Windows 95 and NT.

This will increase the commercial viability of the sys-
tem.

10.2.5Support for Object Embedding

Support OpenDOC/OLE-like capability that allows
components to be associated with other applications
which are able to take over parts of a window in a
FRED application.

10.3 Graphics
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 13 of 33

References

DRAFT VERSION 1.0
10.3.1Support for functionality implemented but
not accessible by the ETHYL language.

Adding commands to the language to provide an
interface to instance calls and the graphical layout
primitives, as well as the magnifier and otherView
editors.

10.3.2Adding 3D (probably OpenGL) support to
the graphics system.

10.3.3Add animation commands to the language.

10.3.4Add Video and sound capabilites to the
system and language.

10.4 User Interface

10.4.1Support for more layouts in the
AutomaticWindow component.

Only layout type #1 is currently supported.

10.4.2Add support for option menus and popup
menus to the systems widgets.

10.5 Data Management

10.5.1Support caching of persistent data.

Currently all data is read into memory upon applica-
tion initialization. This feature would have data be
memory resident only if it is absolutely necessary.

10.5.2Support for importer and exporter
components

10.6 Programmer Support

10.6.1Develop visual framework editor.

Next paper.

10.6.2Integrate framework editor and debugger.

10.7 Intelligence

10.7.1Heuristic rules which suggest operations.

10.7.2Using anthropomorphic agents to assist
the user in these tasks.

10.7.3Automatically generated to-do lists for
various task flows.

11.0References

Hill, Ralph D. (1992). The Abstraction-Link-View Par-
adigm: Using Constraints to Connect User Interfaces
to Applications, ACM CHI Conference Proceedings,
pp 335-342.

12.0Appendix 1: The Support
System Reference

12.1 General

12.1.1Application

The Application component contains information
about the application as a whole.

12.1.2The Help Manager SubComponent
The Help Manager provides support for context-sen-
sitive help-key driven and/or balloon help for all wid-
gets in the application.

12.1.3The Internationalization Manager
SubComponent

The Internationalization (I18N) Manager provides
support for I18N for the application.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 14 of 33

Appendix 1: The Support System Reference

DRAFT VERSION 1.0
12.1.4Document
The document is the container of a group of Entities
and their persistent store and undo/redo files.

12.2 The User Interface System

12.2.1Window
The Window component provides the functionality of
a User Interface Window. An example of a Window
component is:

Window myWindow
{
Attributes(Title = my Window Border Title,

menubar = myMenubar)
}

12.2.2Menubar
The Menubar component provides the functionality of
a window’s menubar.

An example of a Menubar component is:

MenuBar myMenuBar
{
Attributes(backgroundcolor = gray60)
menu(name = File)
pushbutton(

name = “Close”,
Accelerator = Ctrl<Key>c,
AcceleratorText = ^c,
action = close,
ParentMenu = File);

menu(name = Attributes)
pushbutton(

name = “Fonts...”,
Accelerator = Ctrl<Key>f,
AcceleratorText = ^f,
action = fontChooser.popup
ParentMenu = Attributes)

}

The widgets that may be added to Menubars are:

• PushButton

• ToggleButton

• Separator

• Menu (also used to create (shudder) cascading
menus).

12.2.3Panel
The Panel component contains UI widgets and Lay-
out subComponents. It is essentially a rectangular
area in a window that contains UI widgets and/or Edi-
tors and that can be scrollable, have a rectangular
frame, and can act like a radioBox.

Examples of UI Widgets are:

• PushButton

• ArrowButton

• Label

• TextField

• ToggleButton

• Frame

• Image

• Separator

• Slider

• Gauge

• ScrolledList

• ...

12.2.4AutomaticWindow
The AutomaticWindow component automatically cre-
ates a window and the user interface widgets that
correspond to the Fields in the represented Subject
component (usually an Entity). It does this with little
or no explicit instructions by the programmer.

For example:

AutomaticWindow autoWindow
{
Attributes(title = Inspector, maxTextField-

Length = 24)
}

In this example the title of the automatically gener-
ated window will be ‘Inspector’ and the maximum
length of a TextField widget will be 24 characters.

The AutomaticWindow component examines each
field of the represented Subject. For each field a wid-
get type is chosen based on the field’s type. This
choice is based on heuristics and the ‘style.spec’ file.
This file specifies the widget type to use for various
configurations of range, editability and field type.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 15 of 33

Appendix 1: The Support System Reference

DRAFT VERSION 1.0
A number of styles are available for AutomaticWin-
dows. They are as follows:

1. A scrolledList of a column of ‘Label: TextField’ wid-
get pairs. The labels display the Field name, the text-
fields display the editable Field value.

2. Same as #1 but with the addition of a scrolledList on
the left side of the window that lists the names of the
siblings of theSubject.

3. Same as #1 but with a scrolledList across of the bottom
of the window that lists the names and major attributes
of the children of theSubject.

4. Same as #2 combined with #3.

12.2.5SubComponent: Layout
This Subcomponent is used to organize it’s contents
in rows and columns. It can be included in any Win-
dow and Panel. Its children can be any of the follow-
ing:

• Editor

• Iconwell

• Panel

• Layout

• UI Widgets

An example is:

Window myWindow
{
Layout(row = (myIconwell,

column(
myToolbarPanel,
myEditor
)))

}

This example creates a window with myIconwell on
the left side, and on the right side myToolbarPanel is
placed above myEditor.

12.3 Graphics

12.3.1Editor
The graphics Editor component creates an area in
which graphics primitives (i.e. lines, rectangles, cir-

cles,...) are drawn. A large amount of automation and
functionality is available with the Editor component.

Much of the interactive functionality of Editors is
available through a large number (about 60) of
EventHandlers. These eventHandlers perform
actions on graphics primitives, or the editor itself, in
response to user actions within the editor area.
Examples of eventHandlers are:

• smoothPan

• zoomAroundCursor

• animatedZoomAroundCursor

• treeNodeDrag

• alternatingSelect

• iCreateSimpleConn

• jumpPan

• delete

• sendMsgToObjectUnderCursor

• ...

A number of graphics primitives are also available.
Examples are:

• Text

• Circle

• Line

• Icon

• Rectangle

• ObjInBox

• ...

An example of the Editor component is:

Editor myEditor
{
Attributes(BackgroundColor = gray70,

Width = 600, height = 100,
scrollBars = False,
autoPlace = True,
doubleBuffered = True)

animatedZoomAroundCursor()
smoothPan()
}

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 16 of 33

Appendix 1: The Support System Reference

DRAFT VERSION 1.0
12.3.2IconWell
The IconWell component is a scrolledList specifically
designed to hold UI widgets that represent Entities
that can be Dragged-And-Dropped into the Editor.

An example is:

IconWell myIconWell
{
Attributes(dragAndDropTarget = chipEditor,

scrollbarsPolicy = asNeeded)
Layout(column = (

Togglebutton(icon = myObject1.xpm,
dragAndDropObjectRepresented =
myObject1),
Togglebutton(icon = myObject2.xpm,
dragAndDropObjectRepresented =
myObject2)))

}

The IconWell will most likely be replaced when
generic drag-n-drop functionality is available for the
Panel component.

12.3.3Locator
The Locator is a read-only Editor window that pro-
vides a ‘Birds-Eye View’ (sometimes called a panner)
of the graphics in another Editor. There are numer-
ous attributes associated with the Locator that cus-
tomize its appearance and functionality.

12.3.4Magnifier
The Magnifier is a read-only Editor window that pro-
vides a magnified view of the graphics in another Edi-
tor. There are numerous attributes associated with
the Magnifier that customize its appearance and
functionality

12.3.5AnotherView
The AnotherView is an Editor window that provides a
different (editable) view of the graphics in another
Editor. All attributes associated with Editors are avail-
able to this component.

12.4 Animation

12.4.1Engine
The Engine provides elementary support for anima-
tion. Frame rate, start and end times, fast forward
and rewind, are capabilities provided by the Engine.

12.5 Debugging Assistance

12.5.1TestDataGenerator
The TestDataGenerator, when enabled, automati-
cally generates data for the application. In this cir-
cumstance data is not loaded by the Persistence
Manager. Attributes of the TestDataGenerator spec-
ify constraints on what and what not to create and on
the values of the attributes of the created data.

12.5.2Debugger
The Debugger presents a static display of the com-
ponent classes and their relations to each other in a
graphics editor. Components are represented as
rectangles and relations are represented as lines
connecting the rectangles to each other. The lines
are color-coded depending on their type. See the
description of the Framework Editor for more details.

12.6 Programmer Assistance

12.6.1Framework Editor
Next paper.

12.6.2Trace Output File
The Trace Output File contains the nested output of
all debug trace output of the system. Optionally sub-
sets of this output can be sent to STDOUT.

12.6.3Log File
The Log File contains a list of all operations initiated
by the user.

12.7 The Persistence Manager*

The Persistence Manager provides automatic persis-
tence for all data in the application. Data associated
with a particular document is saved to a disk file pre-
viously associated with the document. Session man-
agement (which windows are open and where they
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 17 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
are located on the screen) is also handled by the Per-
sistence Manager. This means that the user can exit
the application at any time. Further, when returning
to the application, all windows and data will return to
their state they were in when the user last used the
application.

12.8 The Undo/Redo Manager*

The Undo/Redo Manager provides automatic infinite
undo/redo for all user operations in the application.
Operations associated with a particular document is
saved to a disk file previously associated with the
document.

13.0Appendix 2: Programmers
Reference

There was not enough time to completely write this
section. The examples are meant to be fully function-
ing demo applications (that will hopefully be useful in
their own right).

13.1 General
• Application

• Help Manager

• Internationalization Manager

• Document

13.2 The User Interface System
• Window

• AutomaticWindow

• Menubar

• Panel

• Layout

13.3 Graphics
• Editor

• Graphics

• IconWell

• Locator

• Magnifier

• AnotherView

13.4 Animation
• Engine

13.5 Debugging Assistance
• TestDataGenerator

• Debugger

13.6 Programmer Assistance
• Framework Editor

13.7 The Persistence Manager*

13.8 The Undo/Redo Manager*
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 18 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Window

Description:

The user interface window component.

Attributes

Name Default Value Possible Values

DialogBoxType DialogBox DialogBox , ModalDialogBox
Title <any text string>
Menubar <any defined Menubar>

Messages Handled

Name
Arguments

Functionality
Default Value Possible Values

popup Make window visible and bring to the front of all other windows.
Close Close window after asking user to verify the loss of any changes.
Cancel Close window without asking user to verify the loss of any changes.
Save Save the contents of the window.
OK Save and close the window.
PostMessage

DialogType
Message

Popup a small dialog with an information icon and a text message.
Ordinary Ordinary, Error, Info, Query, Warning Working,

Help
<None> <any text string>

Messages Generated

Name
Arguments

Functionality
Default Value Possible Values

Close Close is generated when the user closes window by using the win-
dow manager.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 19 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Notes:

Inherited Features: Panel Attributes .

See Also: MenuBar , Panel, Layout, AutomaticWindow

Available SubComponents

Name Functionality

Layout Arrange the contents of the window into rows and columns.

Available Containers

Name Functionality

<None>

Exceptions Generated

Name Functionality

Layout Window has Layout that has unknown keyword
Unknown menubar specified
%Location - unknown value: %value for keyword: %keyword.
%Location - Unknown widget name: %widgetName.
%Location - unknown command: %command.
%Location: Window %windowName has dialogBoxType that has
unknown value: %value.
%Location: Window %windowName: Unknown widget type: %widget-
Type.
%Location: Window %windowName has ScrollBars that has
unknown value: %value
%Location: Window %windowName has ScrollBarsPolicy that has
unknown value: %value
%Location - Attribute: %keyword value retrival not supported.
%Location - %windowName: Asked to obtain value of unknown
attribute: %keyword.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 20 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Example:

Application example
{
Attributes(DefaultFirstWindow = myWindow)
}

Menubar myMenubar
{
Attributes(backgroundcolor = gray60) menu(name = File)
pushbutton(name = “Close”, Accelerator = Ctrl<Key>c, AcceleratorText = ^c, ParentMenu = File);
}

Window myWindow
{
Attributes(Title = My Example Window, menubar = myMenubar)
Layout(row = (myIconWell,

column(
myToolbar,
myEditor,
myPlayerPanel,
Slider(name =mySlider, height = 40, value = @engine.currentTime),
myControlPanel)))

}

A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 21 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
AutomaticWindow

Description:

The user interface window component that automatically generates the widgets that will be used to display and
modify the values of any assigned Entities..

Attributes

Name Default Value Possible Values

DialogBoxType DialogBox DialogBox , ModalDialogBox
Title <any text string>
Menubar <any defined Menubar>

Messages Handled

Name
Arguments

Functionality
Default Value Possible Values

popup Make window visible and bring to the front of all other windows.
Close Close window after asking user to verify the loss of any changes.
Cancel Close window without asking user to verify the loss of any changes.
Save Save the contents of the window.
OK Save and close the window.
PostMessage

DialogType
Message

Popup a small dialog with an information icon and a text message.
Ordinary Ordinary, Error, Info, Query, Warning Working,

Help
<None> <any text string>

Messages Generated

Name
Arguments

Functionality
Default Value Possible Values

Close Close is generated when the user closes window by using the win-
dow manager.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 22 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Notes:

Inherited Features: All Window features .

See Also: Panel, Window

Available SubComponents

Name Functionality

Layout Arrange the contents of the window into rows and columns.

Available Containers

Name Functionality

<None>

Exceptions Generated

Name Functionality

Layout Window has Layout that has unknown keyword
Unknown menubar specified
%Location - unknown value: %value for keyword: %keyword.
%Location - Unknown widget name: %widgetName.
%Location - unknown command: %command.
%Location: Window %windowName has dialogBoxType that has
unknown value: %value.
%Location: Window %windowName: Unknown widget type: %widget-
Type.
%Location: Window %windowName has ScrollBars that has
unknown value: %value
%Location: Window %windowName has ScrollBarsPolicy that has
unknown value: %value
%Location - Attribute: %keyword value retrival not supported.
%Location - %windowName: Asked to obtain value of unknown
attribute: %keyword.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 23 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Example:

AutomaticWindow AutoMaticAttributesWindow
{
Attributes(Title = “Attributes”)
Attributes(maxTextFieldLength = 24)
}

Entity
{
View(name = attributes, Viewer = AutoMaticAttributesWindow, viewObject = this, required = False)
MessageFlow(message = popupAttributes,

action = AutoMaticAttributesWindow.popup,
action = addView(name = attributes))

}

This example creates an Entity that popups an automatically generated attributes window whenever it receives
a popupAttributes message.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 24 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Panel

Description:

The user interface window component.

Panel Attributes

Name Default Possible

BackgroundColor Undefined
ScrollBars True True, HorizontalOnly, VerticalOnly
ScrollBarsPolicy <None> AsNeeded, AlwaysVisible
Frame False False, True
RadioBox False False, True

Messages Handled

Name
Arguments

Functionality
Default Value Possible Values

Messages Generated

Name
Arguments

Functionality
Default Value Possible Values

Available SubComponents

Name Functionality

Layout Arrange the contents of the window into rows and columns.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 25 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Notes:

Inherited Features: None .

See Also: Window, AutomaticWindow, Layout

Example:

Application exampleApplication
{
Attributes(DefaultFirstWindow = myWindow)
}

Window myWindow
{
Layout(row = documentManager)
}

Panel documentManager
{
DataFlow(.docNames.contents = sampleApplication.contents, direction = DestinationToSource, fil-

ter = docFiter)
Layout(column = (

scrolledList(name = docNames),
row(

pushbutton(name = open, sensitivity = @(r).docNames.anItemIsSelected,
acttion = Lue.openDocument(name = %docNames.selectedItem)),

pushbutton(name = copy, sensitivity = @(r).docNames.anItemIsSelected,
action = Lue.copyDocument(name = %docNames.selectedItem)),

Available Containers

Name Functionality

Window
Panel

Exceptions Generated

Name Functionality
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 26 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
pushbutton(name = create,
action = Lue.createDocument(name = newSampleDocument)),

pushbutton(name = delete, sensitivity = @(r).docNames.anItemIsSelected,
action = Lue.deleteDocument(name = %docNames.selectedItem)

)))
 }
Filter docFilter
 {
 Attributes(format = %-10.10name %-40.40description)
 }
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 27 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
MenuBar

Description:

The user interface window component.

Attributes

Name Default Value Possible Values

DialogBoxType DialogBox DialogBox , ModalDialogBox

Messages Handled

Name
Arguments

Functionality
Default Value Possible Values

Messages Generated

Name
Arguments

Functionality
Default Value Possible Values

Available SubComponents

Name Functionality

<None>

Available Containers

Name Functionality

Window
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 28 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Notes:

Inherited Features: None .

See Also: Window

Example:

Menubar myMenubar
{
Attributes(backgroundcolor = gray60)
menu(name = File)

pushbutton(name = “Close”, Accelerator = Ctrl<Key>c, AcceleratorText = ^c, ParentMenu =
File);

menu(name = Edit)
pushbutton(name = “Group”, Accelerator = Ctrl<Key>g, AcceleratorText = ^g, ParentMenu =
Edit, action = myEditor.group);
pushbutton(name = “UnGroup”, Accelerator = Ctrl<Key>u, AcceleratorText = ^u, ParentMenu =
Edit, action = myEditor.ungroup);
pushbutton(name = “Bring to front”, Accelerator = Ctrl<Key>f, AcceleratorText = ^f, ParentM

enu = Edit, action = myEditor.bringToFront);
pushbutton(name = “Send to back”, Accelerator = Ctrl<Key>b, AcceleratorText = ^b, Parent-
Menu = Edit, action = myEditor.sendToBack);

menu(name = Help)
pushbutton(name = “Help on the Graphics Editor”, ParentMenu = Help);

}

Window myWindow
{
Attributes(Title = My Example Window, menubar = myMenubar)
Layout(row = myEditor),
}

Editor myEditor
{
}

Exceptions Generated

Name Functionality
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 29 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Layout

Description:

The user interface window component

Attributes

Name Default Possible

Row
Column

Messages Handled

Name
Arguments

Functionality
Default Value Possible Values

Messages Generated

Name
Arguments

Functionality
Default Value Possible Values

Available SubComponents

Name Functionality

<None>

Available Containers

Name Functionality

Window
Panel
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 30 of 33

Appendix 2: Programmers Reference

DRAFT VERSION 1.0
Notes:

Inherited Features: Panel Attributes .

See Also: Panel, AutomaticWindow

Example:

Menubar myMenubar
{
Attributes(backgroundcolor = gray60) menu(name = File)
pushbutton(name = “Close”, Accelerator = Ctrl<Key>c, AcceleratorText = ^c, ParentMenu = File);
}

Window myWindow
{
Attributes(Title = My Example Window, menubar = myMenubar)
Layout(row = (myIconWell,

column(
myToolbar,
myEditor,
myPlayerPanel,
Slider(name =mySlider, height = 40, value = @engine.currentTime),
myControlPanel)))

}

Exceptions Generated

Name Functionality
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 31 of 33

Questions For You Reviewers

DRAFT VERSION 1.0
14.0Questions For You Reviewers

14.1 Do you understand the system?

14.2 Do you understand it’s purpose?

14.3 Which sections helped you understand the system?

14.4 Which were the least helpful in understanding the system?

14.5 Which sections were exciting?

14.6 Which sections were boring?

14.7 Do you think that this architecture will be useful to you when you design
applications in the future?

14.8 Do you think that this system would be useful to you in implementing
applications in the future?

14.9 Do you think that the built-in components are about right in terms of their:
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 32 of 33

Questions For You Reviewers

DRAFT VERSION 1.0
14.9.1purpose?

14.9.2functionality?

14.9.3customizability?

14.10What components should be added?

14.11What kind of information would help you better understand the purpose and
structure of the system?

14.12What kind of information would help you better understand the usage of the
system?

14.13What is your opinion of the Programmer’s Reference? Was the table layout
structure helpful?

14.14Comments:

Addendum 7/6/98
Fred and Ethel evolved from VisualADE 2.0 and have since evolved into Cadabra. Cadabra provides a very
general and simple methodology for modeling meta-data, meta-rules, meta-relations and meta-behaviors. It is
expected that the Cadabra GUI sub-system will look a lot like the FRED and ETHYL GUI sub-systems.
A Framework (FRED) and Framework Language (ETHYL) - Copyright (c) 1995, Software Farm, Inc. 33 of 33

	FIGURE 1. The Support System of the Framework
	A Framework (FRED) and Framework Language (ETHYL)
	Michael L. Davis
	Software Farm, Inc. (mdavis@csn.net)
	September 22, 1995
	1.0 Introduction
	1.1 Nomenclature

	2.0 The Architectural Design
	2.1 Components
	2.2 Entities
	2.3 Relations
	2.3.1 Control Flow
	FIGURE 1. MessageFlow relations in the Architecture.

	2.3.2 Information Flow
	FIGURE 2. DataFlow Relations in the Architecture.
	FIGURE 3. View Relations in the Architecture.

	2.3.3 Connections

	3.0 The Support System
	3.1 General
	3.2 The User Interface System
	3.3 Graphics
	3.4 Animation
	3.5 Debugging Assistance
	3.6 Programmer Assistance
	3.7 The Persistence Manager*
	3.8 The Undo/Redo Manager*

	4.0 The Language
	4.1 Classes
	4.2 Attributes
	4.3 Fields
	4.4 Messages
	4.5 MessageFlows
	4.6 DataFlows
	4.7 Views
	4.8 Connections

	5.0 Language examples
	6.0 Discussion of the strengths and weaknesses of the Language
	6.1 Strengths
	6.2 Weaknesses

	7.0 Discussion of the strengths and weaknesses of the Framework
	7.1 Strengths
	7.2 Weaknesses
	7.3 Evolvability
	7.4 Size and speed of the resulting application

	8.0 Experience
	8.1 Implementation
	8.2 Application Examples
	8.2.1 Ad-Hoc prototypes
	8.2.2 A Direct-Manipulation Editor for Displaying and Editing Diagrams
	8.2.3 An animation tool

	9.0 Related Work
	10.0 Conclusion and Future Work
	10.1 Language
	10.1.1 Built-in and custom type-convertors.
	10.1.2 Views for individual Fields.
	10.1.3 Add more data-manipulation features to the TestDataGenerator
	10.1.4 Add general cross-platform Drag-N-Drop feature
	10.1.5 Support for editing multiple documents simultaneously.
	10.1.6 Resolve Undo/Redo effects in different windows.
	10.2 Standards

	10.2.1 Support for distributed objects
	10.2.2 Support for commercial databases
	10.2.3 Support for commercial GUI builders.
	10.2.4 Port to MS Windows 95 and NT.
	10.2.5 Support for Object Embedding
	10.3 Graphics

	10.3.1 Support for functionality implemented but not accessible by the ETHYL language.
	10.3.2 Adding 3D (probably OpenGL) support to the graphics system.
	10.3.3 Add animation commands to the language.
	10.3.4 Add Video and sound capabilites to the system and language.
	10.4 User Interface

	10.4.1 Support for more layouts in the AutomaticWindow component.
	10.4.2 Add support for option menus and popup menus to the systems widgets.
	10.5 Data Management

	10.5.1 Support caching of persistent data.
	10.5.2 Support for importer and exporter components
	10.6 Programmer Support

	10.6.1 Develop visual framework editor.
	10.6.2 Integrate framework editor and debugger.
	10.7 Intelligence

	10.7.1 Heuristic rules which suggest operations.
	10.7.2 Using anthropomorphic agents to assist the user in these tasks.
	10.7.3 Automatically generated to-do lists for various task flows.

	11.0 References
	12.0 Appendix 1: The Support System Reference
	12.1 General
	12.1.1 Application
	12.1.2 The Help Manager SubComponent
	12.1.3 The Internationalization Manager SubComponent
	12.1.4 Document
	12.2 The User Interface System

	12.2.1 Window
	12.2.2 Menubar
	12.2.3 Panel
	12.2.4 AutomaticWindow
	1. A scrolledList of a column of ‘Label: TextField’ widget pairs. The labels display the Field na...
	2. Same as #1 but with the addition of a scrolledList on the left side of the window that lists t...
	3. Same as #1 but with a scrolledList across of the bottom of the window that lists the names and...
	4. Same as #2 combined with #3.

	12.2.5 SubComponent: Layout
	12.3 Graphics

	12.3.1 Editor
	12.3.2 IconWell
	12.3.3 Locator
	12.3.4 Magnifier
	12.3.5 AnotherView
	12.4 Animation

	12.4.1 Engine
	12.5 Debugging Assistance

	12.5.1 TestDataGenerator
	12.5.2 Debugger
	12.6 Programmer Assistance

	12.6.1 Framework Editor
	12.6.2 Trace Output File
	12.6.3 Log File
	12.7 The Persistence Manager*
	12.8 The Undo/Redo Manager*

	13.0 Appendix 2: Programmers Reference
	13.1 General
	13.2 The User Interface System
	13.3 Graphics
	13.4 Animation
	13.5 Debugging Assistance
	13.6 Programmer Assistance
	13.7 The Persistence Manager*
	13.8 The Undo/Redo Manager*

	Window
	Description:
	Attributes
	Messages Handled
	Messages Generated
	Available SubComponents
	Available Containers
	Exceptions Generated
	Notes:
	Inherited Features: Panel Attributes.
	See Also: MenuBar, Panel, Layout, AutomaticWindow
	Example:

	AutomaticWindow
	Description:
	Attributes
	Messages Handled
	Messages Generated
	Available SubComponents
	Available Containers
	Exceptions Generated
	Notes:
	Inherited Features: All Window features.
	See Also: Panel, Window
	Example:

	Panel
	Description:
	Panel Attributes
	Messages Handled
	Messages Generated
	Available SubComponents
	Available Containers
	Exceptions Generated
	Notes:
	Inherited Features: None.
	See Also: Window, AutomaticWindow, Layout
	Example:

	MenuBar
	Description:
	Attributes
	Messages Handled
	Messages Generated
	Available SubComponents
	Available Containers
	Exceptions Generated
	Notes:
	Inherited Features: None.
	See Also: Window
	Example:

	Layout
	Description:
	Attributes
	Messages Handled
	Messages Generated
	Available SubComponents
	Available Containers
	Exceptions Generated
	Notes:
	Inherited Features: Panel Attributes.
	See Also: Panel, AutomaticWindow
	Example:
	14.0 Questions For You Reviewers
	14.1 Do you understand the system?
	14.2 Do you understand it’s purpose?
	14.3 Which sections helped you understand the system?
	14.4 Which were the least helpful in understanding the system?
	14.5 Which sections were exciting?
	14.6 Which sections were boring?
	14.7 Do you think that this architecture will be useful to you when you design applications in th...
	14.8 Do you think that this system would be useful to you in implementing applications in the fut...
	14.9 Do you think that the built-in components are about right in terms of their:
	14.9.1 purpose?
	14.9.2 functionality?
	14.9.3 customizability?
	14.10 What components should be added?
	14.11 What kind of information would help you better understand the purpose and structure of the ...
	14.12 What kind of information would help you better understand the usage of the system?
	14.13 What is your opinion of the Programmer’s Reference? Was the table layout structure helpful?
	14.14 Comments:
	FIGURE 1. The Architecture: An example application
	FIGURE 1. The Architecture: Overall design

